985 resultados para phosphate buffer capacity
Resumo:
In Plasmodium falciparum, the formation of isopentenyl diphosphate and dimethylallyl diphosphate, central intermediates in the biosynthesis of isoprenoids, occurs via the methylerythritol phosphate (MEP) pathway. Fosmidomycin is a specific inhibitor of the second enzyme of the MEP pathway, 1-deoxy-D-xylulose-5-phosphate reductoisomerase. We analyzed the effect of fosmidomycin on the levels of each intermediate and its metabolic requirement for the isoprenoid biosynthesis, such as dolichols and ubiquinones, throughout the intraerythrocytic cycle of P. falciparum. The steady-state RNA levels of the MEP pathway-associated genes were quantified by real-time polymerase chain reaction and correlated with the related metabolite levels. Our results indicate that MEP pathway metabolite peak precede maximum transcript abundance during the intraerythrocytic cycle. Fosmidomycin-treatment resulted in a decrease of the intermediate levels in the MEP pathway as well as in ubiquinone and dolichol biosynthesis. The MEP pathway associated transcripts were modestly altered by the drug, indicating that the parasite is not strongly responsive at the transcriptional level. This is the first study that compares the effect of fosmidomycin on the metabolic and transcript profiles in P. falciparum, which has only the MEP pathway for isoprenoid biosynthesis.
Resumo:
cis-natural antisense transcripts (cis-NATs) are widespread in plants and are often associated with downregulation of their associated sense genes. We found that a cis-NAT positively regulates the level of a protein critical for phosphate homeostasis in rice (Oryza sativa). PHOSPHATE1;2 (PHO1;2), a gene involved in phosphate loading into the xylem in rice, and its associated cis-NATPHO1;2 are both controlled by promoters active in the vascular cylinder of roots and leaves. While the PHO1;2 promoter is unresponsive to the plant phosphate status, the cis-NATPHO1;2 promoter is strongly upregulated under phosphate deficiency. Expression of both cis-NATPHO1;2 and the PHO1;2 protein increased in phosphate-deficient plants, while the PHO1;2 mRNA level remained stable. Downregulation of cis-NATPHO1;2 expression by RNA interference resulted in a decrease in PHO1;2 protein, impaired the transfer of phosphate from root to shoot, and decreased seed yield. Constitutive overexpression of NATPHO1;2 in trans led to a strong increase of PHO1;2, even under phosphate-sufficient conditions. Under all conditions, no changes occurred in the level of expression, sequence, or nuclear export of PHO1;2 mRNA. However, expression of cis-NATPHO1;2 was associated with a shift of both PHO1;2 and cis-NATPHO1;2 toward the polysomes. These findings reveal an unexpected role for cis-NATPHO1;2 in promoting PHO1;2 translation and affecting phosphate homeostasis and plant fitness.
Resumo:
The functional interaction between fibroblast growth factor 23 (FGF-23) and Klotho in the control of vitamin D and phosphate homeostasis is manifested by the largely overlapping phenotypes of Fgf23- and Klotho-deficient mouse models. However, to date, targeted inactivation of FGF receptors (FGFRs) has not provided clear evidence for an analogous function of FGFRs in this process. Here, by means of pharmacologic inhibition of FGFRs, we demonstrate their involvement in renal FGF-23/Klotho signaling and elicit their role in the control of phosphate and vitamin D homeostasis. Specifically, FGFR loss of function counteracts renal FGF-23/Klotho signaling, leading to deregulation of Cyp27b1 and Cyp24a1 and the induction of hypervitaminosis D and hyperphosphatemia. In turn, this initiates a feedback response leading to high serum levels of FGF-23. Further, we show that FGFR inhibition blocks Fgf23 transcription in bone and that this is dominant over vitamin D-induced Fgf23 expression, ultimately impinging on systemic FGF-23 protein levels. Additionally, we identify Fgf23 as a specific target gene of FGF signaling in vitro. Thus, in line with Fgf23- and Klotho-deficient mouse models, our study illustrates the essential function of FGFRs in the regulation of vitamin D and phosphate levels. Further, we reveal FGFR signaling as a novel in vivo control mechanism for Fgf23 expression in bone, suggesting a dual function of FGFRs in the FGF-23/Klotho pathway leading to vitamin D and phosphate homeostasis.
Resumo:
Phosphate homeostasis was studied in a monocotyledonous model plant through the characterization of the PHO1 gene family in rice (Oryza sativa). Bioinformatics and phylogenetic analysis showed that the rice genome has three PHO1 homologs, which cluster with the Arabidopsis (Arabidopsis thaliana) AtPHO1 and AtPHO1;H1, the only two genes known to be involved in root-to-shoot transfer of phosphate. In contrast to the Arabidopsis PHO1 gene family, all three rice PHO1 genes have a cis-natural antisense transcript located at the 5 ' end of the genes. Strand-specific quantitative reverse transcription-PCR analyses revealed distinct patterns of expression for sense and antisense transcripts for all three genes, both at the level of tissue expression and in response to nutrient stress. The most abundantly expressed gene was OsPHO1;2 in the roots, for both sense and antisense transcripts. However, while the OsPHO1;2 sense transcript was relatively stable under various nutrient deficiencies, the antisense transcript was highly induced by inorganic phosphate (Pi) deficiency. Characterization of Ospho1;1 and Ospho1;2 insertion mutants revealed that only Ospho1;2 mutants had defects in Pi homeostasis, namely strong reduction in Pi transfer from root to shoot, which was accompanied by low-shoot and high-root Pi. Our data identify OsPHO1;2 as playing a key role in the transfer of Pi from roots to shoots in rice, and indicate that this gene could be regulated by its cis-natural antisense transcripts. Furthermore, phylogenetic analysis of PHO1 homologs in monocotyledons and dicotyledons revealed the emergence of a distinct clade of PHO1 genes in dicotyledons, which include members having roles other than long-distance Pi transport.
Resumo:
The expression of the Bacillus subtilis W23 tar genes specifying the biosynthesis of the major wall teichoic acid, the poly(ribitol phosphate), was studied under phosphate limitation using lacZ reporter fusions. Three different regulation patterns can be deduced from these beta-galactosidase activity data: (i) tarD and tarL gene expression is downregulated under phosphate starvation; (ii) tarA and, to a minor extent, tarB expression after an initial decrease unexpectedly increases; and (iii) tarO is not influenced by phosphate concentration. To dissect the tarA regulatory pattern, its two promoters were analysed under phosphate limitation: The P(tarA)-ext promoter is repressed under phosphate starvation by the PhoPR two-component system, whereas, under the same conditions, the P(tarA)-int promoter is upregulated by the action of an extracytoplasmic function (ECF) sigma factor, sigma(M). In contrast to strain 168, sigma(M) is activated in strain W23 in phosphate-depleted conditions, a phenomenon indirectly dependent on PhoPR, the two-component regulatory system responsible for the adaptation to phosphate starvation. These results provide further evidence for the role of sigma(M) in cell-wall stress response, and suggest that impairment of cell-wall structure is the signal activating this ECF sigma factor.
Resumo:
The Food Safety Knowledge Network (FSKN) was developed through the collaboration of Michigan State University and a professional network of international food industry retailers and manufacturers. The key objective of the FSKN project is to provide technical resources, in a cost effective way, in order to promote food safety in developing countries and for small and less developed companies. FSKN uses a competency based model including a framework, OERs, and assessments. These tools are being used to support face-to-face training, fully online training, and to gauge the learning outcomes of a series of pilot groups which were held in India, Egypt, and China.
Resumo:
Reduction of the antioxidant capacity of plasma has been linked with the impairment of an effective immune response and so we hypothesized that the carriage rate of Neisseria meningitidis in asymptomatic subjects might correlate with the levels of antioxidants in plasma. To this end we took pharyngeal swabs from 339 children in Marquesado Basic Health Zone, Granada, Spain and in addition determined the total antioxidant capacity (TAC) in plasma samples from these subjects. The overall prevalence of N. meningitidis carriage was 5.9% (mean age 7.1 years) with rates of 10.3% in children aged 3 < or =years, 3.9% between 4 and 7 years and 2.4% in older subjects. Plasma TAC for the < or =3-year-olds was 0.13 for carriers and 1.10 for non-carrier controls (P=0.04), 0.13 for carriers aged 4-7 years (controls 0.63) and 0.28 for carriers aged >7 years (controls 0.52). We analysed the association between TAC in plasma (<0.37 - 2 S.D.) and the carrier state of N. meningitidis. In the carrier state, the odds ratio for this association (TAC in plasma <0.25) was 8.44 (95% CI 1.5-48.9). These findings may suggest a reduced immune response in the host favourable to nasopharyngeal persistence of meningococci.
Resumo:
Molar heat capacities at constant pressure of six solid solutions and 11 intermediate phases in the Pd-Pb, Pd-Sn and Pd-In systems were determined each 10 K by differential scanning calorimetry from 310 to 1000 K, The experimental values have been fitted by polynomials C-p = a + bT + cT(2) + d/T-2. Results are given, discussed and compared with available literature data. (C) 2001 Elsevier Science B.V, AII rights reserved.
Resumo:
The study was undertaken in eight endemic districts of Orissa, India, to find the members of the species complexes of Anopheles culicifacies and Anopheles fluviatilis and their distribution patterns. The study area included six forested districts (Keonjhar, Angul, Dhenkanal, Ganjam, Nayagarh and Khurda) and two non-forested coastal districts (Puri and Jagatsingpur) studied over a period of two years (June 2007-May 2009). An. culicifacies A, B, C and D and An. fluviatilis S and T sibling species were reported. The prevalence of An. culicifacies A ranged from 4.2-8.41%, B from 54.96-76.92%, C from 23.08-33.62% and D from 1.85-5.94% (D was reported for the first time in Orissa, except for occurrences in the Khurda and Nayagarh districts). The anthropophilic indices (AI) were 3.2-4.8%, 0.5-1.7%, 0.7-1.37% and 0.91-1.35% for A, B, C and D, respectively, whereas the sporozoite rates (SR) were 0.49-0.54%, 0%, 0.28-0.37% and 0.41-0.46% for A, B, C and D, respectively. An. fluviatilis showed a similarly varied distribution pattern in which S was predominant (84.3% overall); its AI and SR values ranged from 60.7-90.4% and 1.2-2.32%, respectively. The study observed that the co-existence of potential vector sibling species of An. culicifacies (A, C and D) and An. fluviatilis S (> 50%) was responsible for the high endemicity of malaria in forested districts such as Dhenkanal, Keonjhar, Angul, Ganjam, Nayagarh and Khurda (> 5% slide positivity rate). Thus, the epidemiological scenario for malaria is dependent on the distribution of the vector sibling species and their vectorial capacity.
Resumo:
The concentration of circulating glucocorticoids is regulated in response to environmental and endogenous conditions. Total circulating corticosterone, the main glucocorticoid in birds, consists of a fraction which is bound to corticosterone-binding globulins (CBG) and a free fraction. There is increasing evidence that the environment modulates free corticosterone levels through varying the concentration of CBG, but experimental evidence is lacking. To test the hypothesis that the regulation of chronic stress in response to endogenous and environmental conditions involves variation in both corticosterone release and CBG capacity, we performed an experiment with barn owl (Tyto alba) nestlings in two different years with pronounced differences in environmental conditions and in nestlings experimentally fed ad libitum. In half of the individuals we implanted a corticosterone-releasing pellet to artificially increase corticosterone levels and in the other half we implanted a placebo pellet. We then repeatedly collected blood samples to measure the change in total and free corticosterone levels as well as CBG capacity. The increase in circulating total corticosterone after artificial corticosterone administration varied with environmental conditions and with the food regime of the nestlings. The highest total corticosterone levels were found in nestlings growing up in poor environmental conditions and the lowest in ad libitum fed nestlings. CBG was highest in the year with poor environmental conditions, so that, contrary to total corticosterone, free corticosterone levels were low under poor environmental conditions. When nestlings were fed ad libitum total corticosterone, CBG and free corticosterone did not increase when administering corticosterone. These results suggest that depending on the individual history an animal experienced during development the HPA-axis is regulated differently.
Resumo:
OBJECTIVES: After structured treatment interruption (STI) of treatment for HIV-1, a fraction of patients maintain suppressed viral loads. Prospective identification of such patients might improve HIV-1 treatment, if selected patients are offered STI. METHODS: We analysed the effect of previously identified genetic modulators of HIV-1 disease progression on patients' ability to suppress viral replication after STI. Polymorphisms in the genes killer cell immunoglobulin-like receptor 3DLI (KIR3DL1)/KIR3DS1, human leucocyte antigen B (HLA-B) and HLA Complex P5 (HCP5), and a polymorphism affecting HLA-C surface expression were analysed in 130 Swiss HIV Cohort Study patients undergoing STI. Genotypes were correlated with viral load levels after STI. RESULTS: We observed a statistically significant reduction in viral load after STI in carriers of HLA-B alleles containing either the Bw480Thr or the Bw480Ile epitope (mean adjusted effect on post-STI viral load: -0.82 log HIV-1 RNA copies/ml, P < 0.001; and -1.12 log copies/ml, P < 0.001, respectively). No significant effects were detected for the other polymorphisms analysed. The likelihood of being able to control HIV-1 replication using a prespecified cut-off (viral load increase < 1000 copies/ml) increased from 39% in Bw4-negative patients to 53% in patients carrying Bw4-80Thr, and to 65% in patients carrying Bw4-80Ile (P = 0.02). CONCLUSIONS: These data establish a significant impact of HLA-Bw4 on the control of viral replication after STI.
Resumo:
A protein from Arabidopsis thaliana (L.) Heynh. showing homology to animal proteins of the NaPi-1 family, involved in the transport of inorganic phosphate, chloride, glutamate and sialic acid, has been characterized. This protein, named ANTR2 (for anion transporters) was shown by chloroplast subfractionation to be localized to the plastid inner envelope in both A. thaliana and Spinacia oleracea (L.). Immunolocalization revealed that ANTR2 was expressed in the leaf mesophyll cells as well as in the developing embryo at the upturned-U stage. Five additional homologues of ANTR2 are found in the Arabidopsis genome, of which one was shown by green fluorescent protein (GFP) fusion to be also located in the chloroplast. All ANTR proteins share homology to the animal NaPi-1 family, as well as to other organic-anion transporters that are members of the Anion:Cation Symporter (ACS) family, and share the main features of transporters from this family, including the presence of 12 putative transmembrane domains and of a 7-amino acid motif in the fourth putative transmembrane domain. ANTR2 thus represent a novel protein of the plastid inner envelope that is likely to be involved in anion transport.
Resumo:
A dimensional analysis of the classical equations related to the dynamics of vector-borne infections is presented. It is provided a formal notation to complete the expressions for the Ross' Threshold Theorem, the Macdonald's basic reproduction "rate" and sporozoite "rate", Garret-Jones' vectorial capacity and Dietz-Molineaux-Thomas' force of infection. The analysis was intended to provide a formal notation that complete the classical equations proposed by these authors.
Resumo:
In this study, PCR assays targeting different Leishmania heat-shock protein 70 gene (hsp70) regions, producing fragments ranging in size from 230-390 bp were developed and evaluated to determine their potential as a tool for the specific molecular diagnosis of cutaneous leishmaniasis (CL). A total of 70 Leishmania strains were analysed, including seven reference strains (RS) and 63 previously typed strains. Analysis of the RS indicated a specific region of 234 bp in the hsp70 gene as a valid target that was highly sensitive for detection of Leishmania species DNA with capacity of distinguishing all analyzed species, after polymerase chain reaction-restriction fragment length polymorfism (PCR-RFLP). This PCR assay was compared with other PCR targets used for the molecular diagnosis of leishmaniasis: hsp70 (1400-bp region), internal transcribed spacer (ITS)1 and glucose-6-phosphate dehydrogenase (G6pd). A good agreement among the methods was observed concerning the Leishmania species identification. Moreover, to evaluate the potential for molecular diagnosis, we compared the PCR targets hsp70-234 bp, ITS1, G6pd and mkDNA using a panel of 99 DNA samples from tissue fragments collected from patients with confirmed CL. Both PCR-hsp70-234 bp and PCR-ITS1 detected Leishmania DNA in more than 70% of the samples. However, using hsp70-234 bp PCR-RFLP, identification of all of the Leishmania species associated with CL in Brazil can be achieved employing a simpler and cheaper electrophoresis protocol.