936 resultados para peroxisome proliferator activated receptor delta
Resumo:
Overexpression and/or amplification of HER2/neu is frequently detected in many human cancers. Activation of p185 tyrosine kinase can be achieved by point mutation, overexpression, deletion, and heterodimerization with other class I receptors. In this study I investigated the signal transduction pathways mediating the oncogenic signal of the point mutation-activated rat p185. I demonstrated that tyrosine phosphorylation of Shc and formation of Shc/Grb2 complex correlated to the transformation of NIH3T3 cells caused by the point mutation-activated rat HER2/neu. Furthermore, I observed that association with Shc was severely impaired by deletion of most of the major autophosphorylation sites of the point-mutated p185. The truncated p185 product, however, fully retained its ability to transform NIH3T3 cells, induce Shc tyrosine phosphorylation and Shc/Grb2 complex formation. These results suggest that tyrosine phosphorylation of Shc which allows formation of Shc/Grb2 complex may play an important role in cell transformation induced by the point mutation-activated p185, and that stable binding to mutant p185 may not be necessary for Shc to mediate this signaling pathway.^ Recent studies have suggested that formation of the complex containing Sos, Grb2 and Shc is important in coupling receptor tyrosine kinases to the Ras signaling pathway. To clarify the role of this trimer in the oncogenic signaling of the activated p185, I set out to interfere with the protein-protein interactions in Shc/Grb2/Sos complex by introducing Grb2 mutants with deletions in either amino- ($\Delta$N-Grb2) or carboxyl- ($\Delta$C-Grb2) terminal SH3 domains into B104-1-1 cells derived from NIH3T3 cells that express the point mutation-activated HER-2/neu. I found that the transformed phenotypes of the B104-1-1 cells were largely reversed by expression of the $\Delta$N-Grb2. The effect of the $\Delta$C-Grb2 on phenotypic reversion was much weaker. Biochemical analysis showed that the $\Delta$N-Grb2 was able to associate Shc but not the activated p185 nor Sos, while the $\Delta$C-Grb2 bound to Shc, the activated p185, and Sos. The p185-mediated Ras activation was severely inhibited by the $\Delta$N-Grb2 but not the $\Delta$C-Grb2. Taken together, these data demonstrate that interruption of the interaction between Shc and the endogenous Grb2 by the $\Delta$N-Grb2 is able to impair the oncogenic signaling of the mutation-activated p185, indicating that (i) the $\Delta$N-Grb2 functions as a strong dominant-negative mutant, (ii) Shc/Grb2/Sos pathway plays a major role in mediating the oncogenic signal of the mutation-activated p185. Unlike the $\Delta$N-Grb2, the $\Delta$C-Grb2 appears to be a relatively weak dominant-negative mutant, probably due to its ability to largely fulfill the biological functions of the wild-type Grb2. ^
Resumo:
Stimulation of inhibitory neurotransmitter receptors, such as γ-aminobutyric acid type B (GABAB) receptors, activates G protein-gated inwardly rectifying K+ channels (GIRK) which, in turn, influence membrane excitability. Seizure activity has been reported in a Girk2 null mutant mouse lacking GIRK2 channels but showing normal cerebellar development as well as in the weaver mouse, which has mutated GIRK2 channels and shows abnormal development. To understand how the function of GIRK2 channels differs in these two mutant mice, we compared the G protein-activated inwardly rectifying K+ currents in cerebellar granule cells isolated from Girk2 null mutant and weaver mutant mice with those from wild-type mice. Activation of GABAB receptors in wild-type granule cells induced an inwardly rectifying K+ current, which was sensitive to pertussis toxin and inhibited by external Ba2+ ions. The amplitude of the GABAB receptor-activated current was severely attenuated in granule cells isolated from both weaver and Girk2 null mutant mice. By contrast, the G protein-gated inwardly rectifying current and possibly the agonist-independent basal current appeared to be less selective for K+ ions in weaver but not Girk2 null mutant granule cells. Our results support the hypothesis that a nonselective current leads to the weaver phenotype. The loss of GABAB receptor-activated GIRK current appears coincident with the absence of GIRK2 channel protein and the reduction of GIRK1 channel protein in the Girk2 null mutant mouse, suggesting that GABAB receptors couple to heteromultimers composed of GIRK1 and GIRK2 channel subunits.
Resumo:
Mutations in Met have been identified in human papillary renal carcinomas. We have shown previously that these mutations deregulate the enzymatic activity of Met and that NIH 3T3 cells expressing mutationally activated Met are transformed in vitro and are tumorigenic in vivo. In the present investigation, we find that mutant Met induces the motility of Madin-Darby canine kidney cells in vitro and experimental metastasis of NIH 3T3 cells in vivo, and that the Ras-Raf-MEK-ERK signaling pathway, which has been implicated previously in cellular motility and metastasis, is constitutively activated by the Met mutants. We also report that transgenic mice harboring mutationally activated Met develop metastatic mammary carcinoma. These data confirm the tumorigenic activity of mutant Met molecules and demonstrate their ability to induce the metastatic phenotype.
Resumo:
Homologues of Drosophilia transient receptor potential (TRP) have been proposed to be unitary subunits of plasma membrane ion channels that are activated as a consequence of active or passive depletion of Ca2+ stores. In agreement with this hypothesis, cells expressing TRPs display novel Ca2+-permeable cation channels that can be activated by the inositol 1,4,5-trisphosphate receptor (IP3R) protein. Expression of TRPs alters cells in many ways, including up-regulation of IP3Rs not coded for by TRP genes, and proof that TRP forms channels of these and other cells is still missing. Here, we document physical interaction of TRP and IP3R by coimmunoprecipitation and glutathione S-transferase-pulldown experiments and identify two regions of IP3R, F2q and F2g, that interact with one region of TRP, C7. These interacting regions were expressed in cells with an unmodified complement of TRPs and IP3Rs to study their effect on agonist- as well as store depletion-induced Ca2+ entry and to test for a role of their respective binding partners in Ca2+ entry. C7 and an F2q-containing fragment of IP3R decreased both forms of Ca2+ entry. In contrast, F2g enhanced the two forms of Ca2+ entry. We conclude that store depletion-activated Ca2+ entry occurs through channels that have TRPs as one of their normal structural components, and that these channels are directly activated by IP3Rs. IP3Rs, therefore, have the dual role of releasing Ca2+ from stores and activating Ca2+ influx in response to either increasing IP3 or decreasing luminal Ca2+.
Resumo:
Exposure of A431 squamous and MDA-MB-231 mammary carcinoma cells to ionizing radiation has been associated with short transient increases in epidermal growth factor receptor (EGFR) tyrosine phosphorylation and activation of the mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase (JNK) pathways. Irradiation (2 Gy) of A431 and MDA-MB-231 cells caused immediate primary activations (0–10 min) of the EGFR and the MAPK and JNK pathways, which were surprisingly followed by later prolonged secondary activations (90–240 min). Primary and secondary activation of the EGFR was abolished by molecular inhibition of EGFR function. The primary and secondary activation of the MAPK pathway was abolished by molecular inhibition of either EGFR or Ras function. In contrast, molecular inhibition of EGFR function abolished the secondary but not the primary activation of the JNK pathway. Inhibition of tumor necrosis factor α receptor function by use of neutralizing monoclonal antibodies blunted primary activation of the JNK pathway. Addition of a neutralizing monoclonal antibody versus transforming growth factor α (TGFα) had no effect on the primary activation of either the EGFR or the MAPK and JNK pathways after irradiation but abolished the secondary activation of EGFR, MAPK, and JNK. Irradiation of cells increased pro-TGFα cleavage 120–180 min after exposure. In agreement with radiation-induced release of a soluble factor, activation of the EGFR and the MAPK and JNK pathways could be induced in nonirradiated cells by the transfer of media from irradiated cells 120 min after irradiation. The ability of the transferred media to cause MAPK and JNK activation was blocked when media were incubated with a neutralizing antibody to TGFα. Thus radiation causes primary and secondary activation of the EGFR and the MAPK and JNK pathways in autocrine-regulated carcinoma cells. Secondary activation of the EGFR and the MAPK and JNK pathways is dependent on radiation-induced cleavage and autocrine action of TGFα. Neutralization of TGFα function by an anti-TGFα antibody or inhibition of MAPK function by MEK1/2 inhibitors (PD98059 and U0126) radiosensitized A431 and MDA-MB-231 cells after irradiation in apoptosis, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), and clonogenic assays. These data demonstrate that disruption of the TGFα–EGFR–MAPK signaling module represents a strategy to decrease carcinoma cell growth and survival after irradiation.
Resumo:
Fibroblast growth factor receptor 3 (FGFR3) mutations are frequently involved in human developmental disorders and cancer. Activation of FGFR3, through mutation or ligand stimulation, results in autophosphorylation of multiple tyrosine residues within the intracellular domain. To assess the importance of the six conserved tyrosine residues within the intracellular domain of FGFR3 for signaling, derivatives were constructed containing an N-terminal myristylation signal for plasma membrane localization and a point mutation (K650E) that confers constitutive kinase activation. A derivative containing all conserved tyrosine residues stimulates cellular transformation and activation of several FGFR3 signaling pathways. Substitution of all nonactivation loop tyrosine residues with phenylalanine rendered this FGFR3 construct inactive, despite the presence of the activating K650E mutation. Addition of a single tyrosine residue, Y724, restored its ability to stimulate cellular transformation, phosphatidylinositol 3-kinase activation, and phosphorylation of Shp2, MAPK, Stat1, and Stat3. These results demonstrate a critical role for Y724 in the activation of multiple signaling pathways by constitutively activated mutants of FGFR3.
Resumo:
How receptors catalyze exchange of GTP for GDP bound to the Gα subunit of trimeric G proteins is not known. One proposal is that the receptor uses the G protein's βγ heterodimer as a lever, tilting it to pull open the guanine nucleotide binding pocket of Gα. To test this possibility, we designed a mutant Gα that would bind to βγ in the tilted conformation. To do so, we excised a helical turn (four residues) from the N-terminal region of αs, the α subunit of GS, the stimulatory regulator of adenylyl cyclase. In the presence, but not in the absence, of transiently expressed β1 and γ2, this mutant (αsΔ), markedly stimulated cAMP accumulation. This effect depended on the ability of the coexpressed β protein to interact normally with the lip of the nucleotide binding pocket of αsΔ. We substituted alanine for an aspartate in β1 that binds to a lysine (K206) in the lip of the α subunit's nucleotide binding pocket. Coexpressed with αsΔ and γ2, this mutant, β1-D228A, elevated cAMP much less than did β1-wild type; it did bind to αsΔ normally, however, as indicated by its unimpaired ability to target αsΔ to the plasma membrane. We conclude that βγ can activate αs and that this effect probably involves both a tilt of βγ relative to αs and interaction of β with the lip of the nucleotide binding pocket. We speculate that receptors use a similar mechanism to activate trimeric G proteins.
Resumo:
We have studied the properties of r-eag voltage-activated potassium channels in a stably transfected human embryonic kidney cell line. It was found that r-eag channels are rapidly and reversibly inhibited by a rise in intracellular calcium from 30 to 300 nM. The inhibition does not appear to depend on the activity of calcium-dependent kinases and phosphatases. The effect of calcium on r-eag channel activity was studied in inside-out membrane patches. Calcium inhibited r-eag channel activity with a mean IC50 of 67 nM. Activation of muscarinic receptors, generating calcium oscillations in the transfected cells, induced a synchronous inhibition of r-eag mediated outward currents. This shows that calcium can mediate r-eag current inhibition following muscarinic receptor activation. The data indicate that r-eag channels are calcium-inhibitable voltage-activated potassium channels.
Resumo:
In this study, we describe the interaction between cytokine and cytokine receptor (R) for the activation and proliferation of gamma delta T-cell receptor-positive T cells (gamma delta T cells). gamma delta T cells isolated from murine intestinal intraepithelial lymphocytes (IELs) were separated into gamma delta (Dim) and gamma delta (Bright) fractions according to the intensity of gamma delta T-cell receptor expression. The gamma delta T cells express low levels of IL-2R and IL-7R as shown by flow cytometry and reverse transcriptase-PCR analysis, whereas gamma delta (Bright) T cells did not express either receptor. Our study also revealed that recombinant marine (rm)IL-2 and rmIL-7 reciprocally induced high expressions of IL-7R and IL-2R, respectively, on gamma delta (Dim) T cells but not on gamma delta (Bright) cells. Thus, treatment of gamma delta (Dim) T cells with rmIL-2 and rmIL-7 resulted in high proliferative responses, whereas gamma delta (Bright) T cells did not respond to these two cytokines. The sources of these two cytokines for gamma delta T cells were neighboring epithelial cells (IL-7) and alpha beta T cells (IL-2 and IL-7). Cytokine signaling by IL-2 and IL-7 from alpha beta T cells and epithelial cells was necessary for the expression of IL-7R and IL-2R, respectively, on a subset of gamma delta T cells (e.g., gamma delta (Dim) T cells) in mucosa-associated tissue for subsequent activation and cell division.
Resumo:
Extracellular ATP exerts pronounced biological actions in virtually every organ or tissue that has been studied. In the central and peripheral nervous system, ATP acts as a fast excitatory transmitter in certain synaptic pathways [Evans, R.J., Derkach, V. & Surprenant, A. (1992) Nature (London) 357, 503-505; Edwards, F.A., Gigg, A.J. & Colquhoun, D. (1992) Nature (London) 359, 144-147]. Here, we report the cloning and characterization of complementary DNA from rat brain, encoding an additional member (P2X4) of the emerging multigenic family of ligand-gated ATP channels, the P2X receptors. Expression in Xenopus oocytes gives an ATP-activated cation-selective channel that is highly permeable to Ca2+ and whose sensitivity is modulated by extracellular Zn2+. Surprisingly, the current elicited by ATP is almost insensitive to the common P2X antagonist suramin. In situ hybridization reveals the expression of P2X4 mRNA in central nervous system neurons. Northern blot and reverse transcription-PCR (RT-PCR) analysis demonstrate a wide distribution of P2X4 transcripts in various tissues, including blood vessels and leukocytes. This suggests that the P2X4 receptor might mediate not only ATP-dependent synaptic transmission in the central nervous system but also a wide repertoire of biological responses in diverse tissues.
Resumo:
Stimulatory guanine nucleotide binding protein (Gs)-coupled receptors activated by luteinizing hormone, vasopressin, and the catecholamine isoproterenol (luteinizing hormone receptor, type 2 vasopressin receptor, and types 1 and 2 beta-adrenergic receptors) and the Gi-coupled M2 muscarinic receptor (M2R) were expressed transiently in COS cells, alone and in combination with Gbeta gamma dimers, their corresponding Galphas (Galpha(s), or Galpha(i3)) and either Galpha(q) or Galpha(16). Phospholipase C (PLC) activity, assessed by inositol phosphate production from preincorporated myo[3H]inositol, was then determined to gain insight into differential coupling preferences among receptors and G proteins. The following were observed: (i) All receptors tested were able to stimulate PLC activity in response to agonist occupation. The effect of the M2R was pertussis toxin sensitive. (ii) While, as expected, expression of Galpha(q) facilitated an agonist-induced activation of PLC that varied widely from receptor to receptor (400% with type 2 vasopressin receptor and only 30% with M2R), expression of Galpha(16) facilitated about equally well the activation of PLC by any of the tested receptors and thus showed little if any discrimination for one receptor over another. (iii) Gbeta gamma elevated basal (agonist independent) PLC activity between 2- and 4-fold, confirming the proven ability of Gbeta gamma to stimulate PLCbeta. (iv) Activation of expressed receptors by their respective ligands in cells coexpressing excess Gbeta gamma elicited agonist stimulated PLC activities, which, in the case of the M2R, was not blocked by pertussis toxin (PTX), suggesting mediation by a PTX-insensitive PLC-stimulating Galpha subunit, presumably, but not necessarily, of the Gq family. (v) The effects of Gbeta gamma and the PTX-insensitive Galpha elicited by M2R were synergistic, suggesting the possibility that one or more forms of PLC are under conditional or dual regulation of G protein subunits such that stimulation by one sensitizes to the stimulation by the other.
Resumo:
mSOS, a guanine nucleotide exchange factor, is a positive regulator of Ras. Fyn tyrosine protein kinase is a potential mediator in T-cell antigen receptor signal transduction in subsets of T cells. We investigated the functional and physical interaction between mSOS and Fyn in T-cell hybridoma cells. Stimulation of the T-cell antigen receptor induced the activation of guanine nucleotide exchange activity in mSOS immunoprecipitates. Overexpression of Fyn mutants with an activated kinase mutation and with a Src homology 2 deletion mutation resulted in a stimulation and suppression of the mSOS activity, respectively. The complex formations of Fyn-Shc, Shc-Grb2, and Grb2-mSOS were detected in the activated Fyn-transformed cells, whereas the SH2 deletion mutant of Fyn failed to form a complex with mSOS. Moreover, tyrosine phosphorylation of Shc was induced by the overexpression of the activated Fyn. These findings support the idea that Fyn activates the activity of mSOS bound to Grb2 through tyrosine phosphorylation of Shc. Unlike the current prevailing model, Fyn-induced activation of Ras might involve the stimulation of the catalytic guanine nucleotide exchange activity of mSOS.
Resumo:
Opioid receptors are members of the guanine nucleotide binding protein (G protein)-coupled receptor family. Three types of opioid receptors have been cloned and characterized and are referred to as the delta, kappa and mu types. Analysis of receptor chimeras and site-directed mutant receptors has provided a great deal of information about functionally important amino acid side chains that constitute the ligand-binding domains and G-protein-coupling domains of G-protein-coupled receptors. We have constructed delta/mu opioid receptor chimeras that were express in human embryonic kidney 293 cells in order to define receptor domains that are responsible for receptor type selectivity. All chimeric receptors and wild-type delta and mu opioid receptors displayed high-affinity binding of etorphine (an agonist), naloxone (an antagonist), and bremazocine (a mixed agonist/antagonist). In contrast, chimeras that lacked the putative first extracellular loop of the mu receptor did not bind the mu-selective peptide [D-Ala2,MePhe4,Gly5-ol]enkephalin (DAMGO). Chimeras that lacked the putative third extracellular loop of the delta receptor did not bind the delta-selective peptide, [D-Ser2,D-Leu5]enkephalin-Thr (DSLET). Point mutations in the putative third extracellular loop of the wild-type delta receptor that converted vicinal arginine residues to glutamine abolished DSLET binding while not affecting bremazocine, etorphine, and naltrindole binding. We conclude that amino acids in the putative first extracellular loop of the mu receptor are critical for high-affinity DAMGO binding and that arginine residues in the putative third extracellular loop of the delta receptor are important for high-affinity DSLET binding.
Resumo:
The delta isoform of protein kinase C is phosphorylated on tyrosine in response to antigen activation of the high-affinity receptor for immunoglobulin E. While protein kinase C-delta associates with and phosphorylates this receptor, immunoprecipitation of the receptor revealed that little, if any, tyrosine-phosphorylated protein kinase C-delta is receptor associated. In vitro kinase assays with immunoprecipitated tyrosine-phosphorylated protein kinase C-delta showed that the modified enzyme had diminished activity toward the receptor gamma-chain peptide as a substrate but not toward histones or myelin basic protein peptide. We propose a model in which the tyrosine phosphorylation of protein kinase C-delta regulates the kinase specificity toward a given substrate. This may represent a general mechanism by which in vivo protein kinase activities are regulated in response to external stimuli.