684 resultados para perennial ryegrass
Resumo:
Technology intermediaries are seen as potent vehicles for addressing perennial problems in transferring technology from university to industry in developed and developing countries. This paper examines what constitutes effective user-end intermediation in a low-technology, developing economy context, which is an under-researched topic. The social learning in technological innovation framework is extended using situated learning theory in a longitudinal instrumental case study of an exemplar technology intermediation programme. The paper documents the role that academic-related research and advisory centres can play as intermediaries in brokering, facilitating and configuring technology, against the backdrop of a group of small-scale pisciculture businesses in a rural area of Colombia. In doing so, it demonstrates how technology intermediation activities can be optimized in the domestication and innofusion of technology amongst end-users. The design components featured in this instrumental case of intermediation can inform policy making and practice relating to technology transfer from university to rural industry. Future research on this subject should consider the intermediation components put forward, as well as the impact of such interventions, in different countries and industrial sectors. Such research would allow for theoretical replication and help improve technology domestication and innofusion in different contexts, especially in less-developed countries.
Resumo:
Objective: Ocular allergy is a broad group of allergic conditions involving inflammation of the conjunctiva and the most common forms are seasonal allergic conjunctivitis (SAC; 90% of cases) and perennial allergic conjunctivitis (PAC; 5% of cases). The main symptom is ocular itching caused by mast cell degranulation leading to the release of histamine and other mediators such as tryptase. Tryptase is a neutral protease that is selectively concentrated in the secretory granules of human mast cells and has been shown to be a sensitive and specific marker of type I hypersensitivity reaction. The objective was to ascertain the best assay method for determining the tryptase levels in tear samples and whether this can be used to determine the efficacy of non-pharmacological treatments compared to no treatment or their combined effect with anti-allergic medication for SAC and PAC. Method: Thirty patients with a history of SAC were recruited into a randomised blind study during winter months when all the patients were asymptomatic. Suitability was determined by skin prick and conjunctival provocation tests. Patients were randomly assigned to either a non-pharmacological or a pharmacological Intervention group and received each test condition assigned to their group in a randomly assigned order. Symptoms were provoked by exposure to pollen in an environmental test chamber where the temperature, humidity and grass pollen levels were set to a high pollen count day. Tear samples were taken set intervals during the visit and then processed by enzyme linked immunosorbent assay (ELISA) for the detection of tryptase levels. Preliminary results: Results are still being analysed but the preliminary optimisation experiments tested four different ELISA systems; two indirect assays and two capture ‹sandwich› assays. The results suggest that in both sandwich assay systems non-specific binding occurred which could not be easily overcome. The indirect assay systems both showed specific reactions, and the sensitivity achieved was greater with the monoclonal than the polyclonal antibody. Using these findings the indirect assay system was optimised to provide a standardised system for measuring tryptase. Initial trials using human tear samples displayed tryptase levels between 23.1 and 175.1 ng/ml; levels which fall within the anticipated range for patients with SAC. Further statistical work is needed to determine whether tryptase levels vary between the treatments 75.
Resumo:
High-resolution lithostratigraphic data from rock sequences known as the Indidura Formation near Parras de La Fuente, Coahuila, NE Mexico, led to achieve a significant improvement of our knowledge of that Formation. The results of this study indicate for the first time that the sequence at Parras de La Fuente developed from the deposition of calcareous cyanobacterial microspheroids that accumulated under perennial blooms during the Late Cenomanian through the Middle Turonian. Multi-proxy analyses included sedimentological, petrographical, scanning electron microscopy, stable isotope, trace element geochemistry, and paleontological data. The combined results allowed the correlation of δ13C and anomalies in Mo, V, and Cr with the abundance and predominance of calcareous cyanobacterial microspheroids, which were the main suppliers of the carbonate components and the organic matter throughout deposition of the Indidura Formation in the Parras de la Fuente area, under dysoxic/anoxic conditions. Conspicuous interbeds of dark and light-gray laminated marly calcilutites, and dark-gray marlstones that characterize the stratigraphic sequence formed in response to external forcing climatic factors of millennial-scale Milankovitch cycles (ca. 20 ka precession). At the microscopic level, the prominent dark and light-gray laminae were formed during cycles similar to the 10 to 15 years solar irradiance maximum, and represent alternating periods of high and low calcareous cyanobacterial microspheroids productivity.
Resumo:
Our goal was to quantify the coupled process of litter turnover and leaching as a source of nutrients and fixed carbon in oligotrophic, nutrient-limited wetlands. We conducted poisoned and non-poisoned incubations of leaf material from four different perennial wetland plants (Eleocharis spp., Cladium jamaicense, Rhizophora mangle and Spartina alterniflora) collected from different oligotrophic freshwater and estuarine wetland settings. Total phosphorus (TP) release from the P-limited Everglades plant species (Eleocharis spp., C. jamaicense and R. mangle) was much lower than TP release by the salt marsh plant S. alterniflora from N-limited North Inlet (SC). For most species and sampling times, total organic carbon (TOC) and TP leaching losses were much greater in poisoned than non-poisoned treatments, likely as a result of epiphytic microbial activity. Therefore, a substantial portion of the C and P leached from these wetland plant species was bio-available to microbial communities. Even the microbes associated with S. alterniflora from N-limited North Inlet showed indications of P-limitation early in the leaching process, as P was removed from the water column. Leaves of R. mangle released much more TOC per gram of litter than the other species, likely contributing to the greater waterborne [DOC] observed by others in the mangrove ecotone of Everglades National Park. Between the two freshwater Everglades plants, C. jamaicense leached nearly twice as much P than Eleocharis spp. In scaling this to the landscape level, our observed leaching losses combined with higher litter production of C. jamaicense compared to Eleocharis spp. resulted in a substantially greater P leaching from plant litter to the water column and epiphytic microbes. In conclusion, leaching of fresh plant litter can be an important autochthonous source of nutrients in freshwater and estuarine wetland ecosystems.
Resumo:
Storage is a central part of computing. Driven by exponentially increasing content generation rate and a widening performance gap between memory and secondary storage, researchers are in the perennial quest to push for further innovation. This has resulted in novel ways to "squeeze" more capacity and performance out of current and emerging storage technology. Adding intelligence and leveraging new types of storage devices has opened the door to a whole new class of optimizations to save cost, improve performance, and reduce energy consumption. In this dissertation, we first develop, analyze, and evaluate three storage extensions. Our first extension tracks application access patterns and writes data in the way individual applications most commonly access it to benefit from the sequential throughput of disks. Our second extension uses a lower power flash device as a cache to save energy and turn off the disk during idle periods. Our third extension is designed to leverage the characteristics of both disks and solid state devices by placing data in the most appropriate device to improve performance and save power. In developing these systems, we learned that extending the storage stack is a complex process. Implementing new ideas incurs a prolonged and cumbersome development process and requires developers to have advanced knowledge of the entire system to ensure that extensions accomplish their goal without compromising data recoverability. Futhermore, storage administrators are often reluctant to deploy specific storage extensions without understanding how they interact with other extensions and if the extension ultimately achieves the intended goal. We address these challenges by using a combination of approaches. First, we simplify the storage extension development process with system-level infrastructure that implements core functionality commonly needed for storage extension development. Second, we develop a formal theory to assist administrators deploy storage extensions while guaranteeing that the given high level goals are satisfied. There are, however, some cases for which our theory is inconclusive. For such scenarios we present an experimental methodology that allows administrators to pick an extension that performs best for a given workload. Our evaluation demostrates the benefits of both the infrastructure and the formal theory.
Resumo:
For the Wayuu of the Guajira Peninsula of northern Colombia, water procurement has historically been challenging. The ancestral territory of this indigenous pastoral society is windy and arid, with low rainfall, high temperatures and an absence of perennial rivers or streams. In the past, the Wayuu adapted to these environmental conditions by practicing transhumance during the prolonged dry seasons, digging spring wells and artificial ponds and by following guiding principles for water usage. Since the 1930s, the government has made efforts to build additional wind-powered wells and ponds for a growing native population. Notwithstanding, these water solutions have only partly met the necessities; public water sources are limited or unreliable and few attempts are made to generate safe drinking water. Furthermore, the ubiquitous practice of animal husbandry places added pressure on existing sources; livestock consume more water than the human populations in the areas visited. Rapid assessments in four Wayuu areas on the peninsula were conducted by the author and an interdisciplinary team working for the Cerrejón Foundation for Water in La Guajira from 2010 to 2013. The assessments were part of a larger pilot project to design and implement a sustainability plan for reservoir-based water supply systems in the region. This study brings cultural practices and local knowledge to the forefront as key elements for the success of water works and other development projects carried out in Wayuu territory.
Resumo:
Karim Rashid is one of the most prolific designers of his generation. Over 3000 designs in production, over 300 awards and working in over 35 countries attest to Karim’s legend of design. Karim’s diversity affords him the ability to cross-pollinate ideas, materials, behaviors, aesthetics from one typology to the next, crossing boundaries and broadening consumer horizons. His award winning designs include democratic objects such as the ubiquitous Garbo waste can and Oh Chair for Umbra, interiors such as the Morimoto restaurant, Philadelphia and Semiramis hotel, Athens and exhibitions for LG Hausys and Audi. Karim has collaborated with clients to create democratic design for Method and Dirt Devil, furniture for Artemide and Magis, brand identity for Citibank and Hyundai, high tech products for LaCie and Samsung, and luxury goods for Veuve Clicquot and Swarovski, to name a few. Karim has recently been selected to design several real estate developments in New York City for HAP Investments, a New York City based International investment group. Karim’s work is featured in 20 permanent collections and he exhibits art in galleries world wide. Karim is a perennial winner of the Red Dot award, Chicago Athenaeum Good Design award, I.D. Magazine Annual Design Review, IDSA Industrial Design Excellence award. He holds honorary doctorates from the Ontario college of Art & Design and Corcoran College of Art & Design. 2011 highlighted Karim’s largest retrospective to date at the Triennale, in Milan, Italy. Karim is a frequent guest lecturer at universities and conferences globally disseminating the importance of design in everyday life. Karim has been featured in magazines including Time, Financial Times, NY Times, Esquire, GQ and countless more. His books include From the Beginning, Forma Edizioni (2014), Sketch, Frame (2012), a monograph of 300 drawings and computer renderings of selected works, KarimSpace, Rizzoli (2009), Design Your Self, Harper Collins (2006), Evolution, Rizzoli (2004) and I Want to Change the World, Universe (2001). In his spare time Karim’s pluralism flirts with art, fashion, and music and is determined to creatively touch every aspect of our physical and virtual landscape.
Resumo:
High-resolution lithostratigraphic data from rock sequences known as the Indidura Formation near Parras de La Fuente, Coahuila, NE Mexico, led to achieve a significant improvement of our knowledge of that Formation. The results of this study indicate for the first time that the sequence at Parras de La Fuente developed from the deposition of calcareous cyanobacterial microspheroids that accumulated under perennial blooms during the Late Cenomanian through the Middle Turonian. Multi-proxy analyses included sedimentological, petrographical, scanning electron microscopy, stable isotope, trace element geochemistry, and paleontological data. The combined results allowed the correlation of δ13C and anomalies in Mo, V, and Cr with the abundance and predominance of calcareous cyanobacterial microspheroids, which were the main suppliers of the carbonate components and the organic matter throughout deposition of the Indidura Formation in the Parras de la Fuente area, under dysoxic/anoxic conditions. Conspicuous interbeds of dark and light-gray laminated marly calcilutites, and dark-gray marlstones that characterize the stratigraphic sequence formed in response to external forcing climatic factors of millennial-scale Milankovitch cycles (ca. 20 ka precession). At the microscopic level, the prominent dark and light-gray laminae were formed during cycles similar to the 10 to 15 years solar irradiance maximum, and represent alternating periods of high and low calcareous cyanobacterial microspheroids productivity.
Resumo:
The present microfouling and bioassay data were used to analyse whether microfouling control of F. vesiculosus and F. serratus against prokaryotes and pennate diatoms fluctuates with season and correlates with in situ microfouling pressure. The two perennial brown macroalgae Fucus vesiculosus and Fucus serratus were sampled monthly from mixed stands at a depth of 0.5 m under mid water level at Bülk, outer Kiel Fjord, Germany (54°27'21 N / 10°11'57 E) within a one-year filed study (August 2012 - July 2013). Microfouler recruitment on glass (reference surface, n = 9 per month) and on both Fucus species (n = 9 per month and Fucus species) was determined monthly. Microfouling control strength of Fucus surface metabolites was tested by an in situ bioassay approach (n = 6 per month and species). For details see related publication Rickert et al. 2016, DOI: 10.1007/s00227-016-2970-3.
Resumo:
Planktic foraminifers Neogloboquadrina pachyderma (sin.) from 87 eastern and central Arctic Ocean surface sediment samples were analyzed for stable oxygen and carbon isotope composition. Additional results from 52 stations were taken from the literature. The lateral distribution of delta18O (18O/16O) values in the Arctic Ocean reveals a pattern of roughly parallel, W-E stretching zones in the Eurasian Basin, each ~0.5 per mil wide on the delta18O scale. The low horizontal and vertical temperature variability in the Arctic halocline waters (0-100 m) suggests only little influence of temperature on the oxygen isotope distribution of N. pachyderma (sin.). The zone of maximum delta18O values of up to 3.8 per mil is situated in the southern Nansen Basin and relates to the tongue of saline (> 33%.) Atlantic waters entering the Arctic Ocean through the Fram Strait. delta18O values decrease both to the Barents Shelf and to the North Pole, in accordance with the decreasing salinities of the halocline waters. In the Nansen Basin, a strong N-S delta18O gradient is in contrast with a relatively low salinity change and suggests contributions from different freshwater sources, i.e. salinity reduction from sea ice meltwater in the south and from light isotope waters (meteoric precipitation and river-runoff) in the northern part of the basin. North of the Gakkel Ridge, delta18O and salinity gradients are in good accordance and suggest less influence of sea ice melting processes. The delta13C (13C/12C) values of N. pachyderma (sin.) from Arctic Ocean surface sediment samples are generally high (0.75-0.95 per mil). Lower values in the southern Eurasian Basin appear to be related to the intrusion of Atlantic waters. The high delta13C values are evidence for well ventilated surface waters. Because the perennial Arctic sea ice cover largely prevents atmosphere-ocean gas exchange, ventilation on the seasonally open shelves must be of major importance. Lack of delta13C gradients along the main routes of the ice drift from the Siberian shelves to the Fram Strait suggests that primary production (i.e. CO2 consumption) does probably not change the CO2 budget of the Arctic Ocean significantly.
Resumo:
Funded by UK's Biotechnology and Biological Sciences Research Council (BBSRC) Department for Environment, Food and Rural Affairs (DEFRA). Grant Number: LK0863 BBSRC strategic programme Grant on Energy Grasses & Bio-refining. Grant Number: BBS/E/W/10963A01 OPTIMISC. Grant Number: FP7-289159 WATBIO. Grant Number: FP7-311929 Innovate UK/BBSRC ‘MUST’. Grant Number: BB/N016149/1
Resumo:
Election forecasting models assume retrospective economic voting and clear mechanisms of accountability. Previous research indeed indicates that incumbent political parties are being held accountable for the state of the economy. In this article we develop a ‘hard case’ for the assumptions of election forecasting models. Belgium is a multiparty system with perennial coalition governments. Furthermore, Belgium has two completely segregated party systems (Dutch and French language). Since the prime minister during the period 1974-2011 has always been a Dutch language politician, French language voters could not even vote for the prime minister, so this cognitive shortcut to establish political accountability is not available. Results of an analysis for the French speaking parties (1981-2010) show that even in these conditions of opaque accountability, retrospective economic voting occurs as election results respond to indicators with regard to GDP and unemployment levels. Party membership figures can be used to model the popularity function in election forecasting.
Resumo:
This dissertation interrogates existing scholarly paradigms regarding aetiology in the Histories of Herodotus in order to open up new avenues to approach a complex and varied topic. Since aetiology has mostly been treated as the study of cause and effect in the Histories, this work expands the purview of aetiology to include Herodotus’ explanations of origins more generally. The overarching goal in examining the methodological principles of Herodotean aetiology is to show the extent to which they resonate across the Histories according to their initial development in the proem, especially in those places that seem to deviate from the work’s driving force (i.e. the Persian Wars). Though the focus is on correlating the principles espoused in the proem with their deployment in Herodotus’ ethnographies and other seemingly divergent portions of his work, the dissertation also demonstrates the influence of these principles on some of the more “historical” aspects of the Histories where the struggle between Greeks and barbarians is concerned. The upshot is to make a novel case not only for the programmatic significance of the proem, but also for the cohesion of Herodotean methodology from cover to cover, a perennial concern for scholars of Greek history and historiography.
Chapter One illustrates how the proem to the Histories (1.1.0-1.5.3) prefigures Herodotus’ engagement with aetiological discussions throughout the Histories. Chapter Two indicates how the reading of the proem laid out in Chapter One allows for Herodotus’ deployment of aetiology in the Egyptian logos (especially where the pharaoh Psammetichus’ investigation of the origins of Egyptian language, nature, and custom are concerned) to be viewed within the methodological continuum of the Histories at large. Chapter Three connects Herodotus’ programmatic interest in the origins of erga (i.e. “works” or “achievements” manifested as monuments and deeds of abstract and concrete sorts) with the patterns addressed in Chapters One and Two. Chapter Four examines aetiological narratives in the Scythian logos and argues through them that this logos is as integral to the Histories as the analogous Egyptian logos studied in Chapter Two. Chapter Five demonstrates how the aetiologies associated with the Greeks’ collaboration with the Persians (i.e. medism) in the lead-up to the battle of Thermopylae recapitulate programmatic patterns isolated in previous chapters and thereby extend the methodological continuum of the Histories beyond the “ethnographic” logoi to some of the most representative “historical” logoi of Herodotus’ work. Chapter Six concludes the dissertation and makes one final case for methodological cohesion by showing the inextricability of the end of the Histories from its beginning.
Resumo:
All organisms live in complex habitats that shape the course of their evolution by altering the phenotype expressed by a given genotype (a phenomenon known as phenotypic plasticity) and simultaneously by determining the evolutionary fitness of that phenotype. In some cases, phenotypic evolution may alter the environment experienced by future generations. This dissertation describes how genetic and environmental variation act synergistically to affect the evolution of glucosinolate defensive chemistry and flowering time in Boechera stricta, a wild perennial herb. I focus particularly on plant-associated microbes as a part of the plant’s environment that may alter trait evolution and in turn be affected by the evolution of those traits. In the first chapter I measure glucosinolate production and reproductive fitness of over 1,500 plants grown in common gardens in four diverse natural habitats, to describe how patterns of plasticity and natural selection intersect and may influence glucosinolate evolution. I detected extensive genetic variation for glucosinolate plasticity and determined that plasticity may aid colonization of new habitats by moving phenotypes in the same direction as natural selection. In the second chapter I conduct a greenhouse experiment to test whether naturally-occurring soil microbial communities contributed to the differences in phenotype and selection that I observed in the field experiment. I found that soil microbes cause plasticity of flowering time but not glucosinolate production, and that they may contribute to natural selection on both traits; thus, non-pathogenic plant-associated microbes are an environmental feature that could shape plant evolution. In the third chapter, I combine a multi-year, multi-habitat field experiment with high-throughput amplicon sequencing to determine whether B. stricta-associated microbial communities are shaped by plant genetic variation. I found that plant genotype predicts the diversity and composition of leaf-dwelling bacterial communities, but not root-associated bacterial communities. Furthermore, patterns of host genetic control over associated bacteria were largely site-dependent, indicating an important role for genotype-by-environment interactions in microbiome assembly. Together, my results suggest that soil microbes influence the evolution of plant functional traits and, because they are sensitive to plant genetic variation, this trait evolution may alter the microbial neighborhood of future B. stricta generations. Complex patterns of plasticity, selection, and symbiosis in natural habitats may impact the evolution of glucosinolate profiles in Boechera stricta.
Resumo:
Secure Access For Everyone (SAFE), is an integrated system for managing trust
using a logic-based declarative language. Logical trust systems authorize each
request by constructing a proof from a context---a set of authenticated logic
statements representing credentials and policies issued by various principals
in a networked system. A key barrier to practical use of logical trust systems
is the problem of managing proof contexts: identifying, validating, and
assembling the credentials and policies that are relevant to each trust
decision.
SAFE addresses this challenge by (i) proposing a distributed authenticated data
repository for storing the credentials and policies; (ii) introducing a
programmable credential discovery and assembly layer that generates the
appropriate tailored context for a given request. The authenticated data
repository is built upon a scalable key-value store with its contents named by
secure identifiers and certified by the issuing principal. The SAFE language
provides scripting primitives to generate and organize logic sets representing
credentials and policies, materialize the logic sets as certificates, and link
them to reflect delegation patterns in the application. The authorizer fetches
the logic sets on demand, then validates and caches them locally for further
use. Upon each request, the authorizer constructs the tailored proof context
and provides it to the SAFE inference for certified validation.
Delegation-driven credential linking with certified data distribution provides
flexible and dynamic policy control enabling security and trust infrastructure
to be agile, while addressing the perennial problems related to today's
certificate infrastructure: automated credential discovery, scalable
revocation, and issuing credentials without relying on centralized authority.
We envision SAFE as a new foundation for building secure network systems. We
used SAFE to build secure services based on case studies drawn from practice:
(i) a secure name service resolver similar to DNS that resolves a name across
multi-domain federated systems; (ii) a secure proxy shim to delegate access
control decisions in a key-value store; (iii) an authorization module for a
networked infrastructure-as-a-service system with a federated trust structure
(NSF GENI initiative); and (iv) a secure cooperative data analytics service
that adheres to individual secrecy constraints while disclosing the data. We
present empirical evaluation based on these case studies and demonstrate that
SAFE supports a wide range of applications with low overhead.