669 resultados para palaemon floridanus
Resumo:
Detailed quantitative analyses of selected calcareous nannofossil species were used to determine the placement of zonal boundaries. In Hole 667A in the equatorial Atlantic Ocean, Zones CP19 through CN5 were recognized, whereas at Site 574 in the equatorial Pacific Ocean, only the CN4/CN5 boundary could be determined. Boundaries were identified by sharp rises and declines in abundance at the beginnings and ends, respectively, of index fossil ranges. The sharp rise in abundance at the beginning of the range of Triquetrorhabdulus rugosus provided a good datum level in both regions; the same is true for the sharp decline in abundance at the end of the range of Cyclicargolithus floridanus. The last occurrence of Helicosphaera ampliaperta was used to mark the CN3/CN4 boundary in Hole 667A, while at Site 574, H. ampliaperta was absent. The abundance pattern of Triquetrorhabdulus carinatus obtained from Hole 667A makes it impossible to observe a distinct disappearance level. Age/depth plots reveal uniform sedimentation rates at both sites during early Miocene times. At Site 667 in the Atlantic the mean sedimentation rate was 14.90 m/m.y., and at Site 574 in the Pacific it was 16.17 m/m.y. during this same period. One new nannofossil species, Triquetrorhabdulus rioensis, is described; and one species, Triquetrorhabdulus serratus, is recombined.
Resumo:
The chronostratigraphy, the calcareous nannofossil biochronology, and the biostratigraphy of the Miocene and Pliocene sediments retrieved during Leg 115 in the equatorial western Indian Ocean are presented and discussed. Most of the zonal boundaries of the standard 1971 zonation of Martini and the 1973 zonation of Bukry are easily recognized in these low-latitude sediments. We also comment on the secondary events that are proposed in the literature to improve the biostratigraphic resolution provided by the standard zonations. The study of calcareous nannofossil biostratigraphy and taphonomy of sequences from the Northern Mascarene Plateau area, which was drilled to investigate the Neogene history of carbonate flux and dissolution, indicate that the accumulation of carbonates in this area results from a complex interplay among carbonate bioproductivity, carbonate removal by chemical dissolution and mechanical erosion, and carbonate addition by mass and current transport. In spite of these drawbacks, major changes and trends in carbonate accumulation can be recognized, most of which, if not all, correlate with major steps in the evolution of the Neogene climatic system.