946 resultados para organ size control
Resumo:
Next generation networks are characterized by ever increasing complexity, intelligence, heterogeneous technologies and increasing user expectations. Telecommunication networks in particular have become truly global, consisting of a variety of national and regional networks, both wired and wireless. Consequently, the management of telecommunication networks is becoming increasingly complex. In addition, network security and reliability requirements require additional overheads which increase the size of the data records. This in turn causes acute network traffic congestions. There is no single network management methodology to control the various requirements of today's networks, and provides a good level of Quality of Service (QoS), and network security. Therefore, an integrated approach is needed in which a combination of methodologies can provide solutions and answers to network events (which cause severe congestions and compromise the quality of service and security). The proposed solution focused on a systematic approach to design a network management system based upon the recent advances in the mobile agent technologies. This solution has provided a new traffic management system for telecommunication networks that is capable of (1) reducing the network traffic load (thus reducing traffic congestion), (2) overcoming existing network latency, (3) adapting dynamically to the traffic load of the system, (4) operating in heterogeneous environments with improved security, and (5) having robust and fault tolerance behavior. This solution has solved several key challenges in the development of network management for telecommunication networks using mobile agents. We have designed several types of agents, whose interactions will allow performing some complex management actions, and integrating them. Our solution is decentralized to eliminate excessive bandwidth usage and at the same time has extended the capabilities of the Simple Network Management Protocol (SNMP). Our solution is fully compatible with the existing standards.
Resumo:
Since the introduction of fiber reinforced polymers (FRP) for the repair and retrofit of concrete structures in the 1980’s, considerable research has been devoted to the feasibility of their application and predictive modeling of their performance. However, the effects of flaws present in the constitutive components and the practices in substrate preparation and treatment have not yet been thoroughly studied. This research aims at investigating the effect of surface preparation and treatment for the pre-cured FRP systems and the groove size tolerance for near surface mounted (NSM) FRP systems; and to set thresholds for guaranteed system performance. This study was conducted as part of the National Cooperative Highway Research Program (NCHRP) Project 10-59B to develop construction specifications and process control manual for repair and retrofit of concrete structures using bonded FRP systems. The research included both analytical and experimental components. The experimental program for the pre-cured FRP systems consisted of a total of twenty-four (24) reinforced concrete (RC) T-beams with various surface preparation parameters and surface flaws, including roughness, flatness, voids and cracks (cuts). For the NSM FRP systems, a total of twelve (12) additional RC T-beams were tested with different grooves sizes for FRP bars and strips. The analytical program included developing an elaborate nonlinear finite element model using the general purpose software ANSYS. The bond interface between FRP and concrete was modeled by a series of nonlinear springs. The model was validated against test data from the present study as well as those available from the literature. The model was subsequently used to extend the experimental range of parameters for surface flatness in pre-cured FRP systems and for groove size study in the NSM FRP systems. Test results, confirmed by further analyses, indicated that contrary to the general belief in the industry, the impact of surface roughness on the global performance of pre-cured FRP systems was negligible. The study also verified that threshold limits set for wet lay-up FRP systems can be extended to pre-cured systems. The study showed that larger surface voids and cracks (cuts) can adversely impact both the strength and ductility of pre-cured FRP systems. On the other hand, frequency (or spacing) of surface cracks (cuts) may only affect system ductility rather than its strength. Finally, within the range studied, groove size tolerance of ±1/8 in. does not appear to have an adverse effect on the performance of NSM FRP systems.
Resumo:
Purpose: To investigate to what degree the presence of hypertension (HTN) and poor glycemic control (GC) influences the likelihood of having microalbuminuria (MAU) among Cuban Americans with type 2 diabetes (T2D).Methods: A cross-sectional study conducted in Cuban Americans (n = 179) with T2D. Participants were recruited from a randomly generated mailing list purchased from KnowledgeBase Marketing, Inc. Blood pressure (BP) was measured twice and averaged using an adult size cuff. Glycosylated hemoglobin (A1c) levels were measured from whole blood samples with the Roche Tina-quant method. First morning urine samples were collected from each participant to determine MAU by a semiquantitative assay (ImmunoDip).Results: MAU was present in 26% of Cuban Americans with T2D. A significantly higher percentage of subjects with MA had HTN (P = 0.038) and elevated A1C (P = 0.002) than those with normoalbuminuria. Logistic regression analysis showed that after controlling for covariates, subjects with poor GC were 6.76 times more likely to have MAU if they had hypertension compared with those without hypertension (P = 0.004; 95% confidence interval [CI]: 1.83, 23.05). Conclusion: The clinical significance of these findings emphasizes the early detection of MAU in this Hispanic subgroup combined with BP and good GC, which are fundamentals in preventing and treating diabetes complications and improving individuals’ renal and cardiovascular outcomes.
Resumo:
Sexually-selected communication signals can be used by competing males to settle contests without incurring the costs of fighting. The ability to dynamically regulate the signal in a context-dependent manner can further minimize the costs of male aggressive interactions. Such is the case in the gymnotiform fish Brachyhypopomus gauderio, which, by coupling its electric organ discharge (EOD) waveform to endocrine systems with circadian, seasonal, and behavioral drivers, can regulate its signal to derive the greatest reproductive benefit. My dissertation research examined the functional role of the EOD plasticity observed in male B. gauderio and the physiological mechanisms that regulate the enhanced male EOD. To evaluate whether social competition drives the EOD changes observed during male-male interactions, I manipulated the number of males in breeding groups to create conditions that exemplified low and high competition and measured their EOD and steroid hormone levels. My results showed that social competition drives the enhancement of the EOD amplitude of male B. gauderio. In addition, changes in the EOD of males due to changes in their social environment were paralleled by changes in the levels of androgens and cortisol. I also examined the relationship between body size asymmetry, EOD waveform parameters, and aggressive physical behaviors during male-male interactions in B. gauderio, in order to understand more fully the role of EOD waveforms as reliable signals. While body size was the best determinant of dominance in male B. gauderio, EOD amplitude reliably predicted body condition, a composite of length and weight, for fish in good body condition. To further characterize the mechanisms underlying the relationship between male-male interactions and EOD plasticity, I identified the expression of the serotonin receptor 1A, a key player in the regulation of aggressive behavior, in the brains of B. gauderio. I also identified putative regulatory regions in this receptor in B. gauderio and other teleost fish, highlighting the presence of additional plasticity. In conclusion, male-male competition seems to be a strong selective driver in the evolution of the male EOD plasticity in B. gauderio via the regulatory control of steroid hormones and the serotonergic system.
Resumo:
Sexually-selected communication signals can be used by competing males to settle contests without incurring the costs of fighting. The ability to dynamically regulate the signal in a context-dependent manner can further minimize the costs of male aggressive interactions. Such is the case in the gymnotiform fish Brachyhypopomus gauderio, which, by coupling its electric organ discharge (EOD) waveform to endocrine systems with circadian, seasonal, and behavioral drivers, can regulate its signal to derive the greatest reproductive benefit. My dissertation research examined the functional role of the EOD plasticity observed in male B. gauderio and the physiological mechanisms that regulate the enhanced male EOD. To evaluate whether social competition drives the EOD changes observed during male-male interactions, I manipulated the number of males in breeding groups to create conditions that exemplified low and high competition and measured their EOD and steroid hormone levels. My results showed that social competition drives the enhancement of the EOD amplitude of male B. gauderio. In addition, changes in the EOD of males due to changes in their social environment were paralleled by changes in the levels of androgens and cortisol. I also examined the relationship between body size asymmetry, EOD waveform parameters, and aggressive physical behaviors during male-male interactions in B. gauderio, in order to understand more fully the role of EOD waveforms as reliable signals. While body size was the best determinant of dominance in male B. gauderio, EOD amplitude reliably predicted body condition, a composite of length and weight, for fish in good body condition. To further characterize the mechanisms underlying the relationship between male-male interactions and EOD plasticity, I identified the expression of the serotonin receptor 1A, a key player in the regulation of aggressive behavior, in the brains of B. gauderio. I also identified putative regulatory regions in this receptor in B. gauderio and other teleost fish, highlighting the presence of additional plasticity. In conclusion, male-male competition seems to be a strong selective driver in the evolution of the male EOD plasticity in B. gauderio via the regulatory control of steroid hormones and the serotonergic system.
Resumo:
Germanium (Ge) nanowires are of current research interest for high speed nanoelectronic devices due to the lower band gap and high carrier mobility compatible with high K-dielectrics and larger excitonic Bohr radius ensuing a more pronounced quantum confinement effect [1-6]. A general way for the growth of Ge nanowires is to use liquid or a solid growth promoters in a bottom-up approach which allow control of the aspect ratio, diameter, and structure of 1D crystals via external parameters, such as precursor feedstock, temperature, operating pressure, precursor flow rate etc [3, 7-11]. The Solid-phase seeding is preferred for more control processing of the nanomaterials and potential suppression of the unintentional incorporation of high dopant concentrations in semiconductor nanowires and unrequired compositional tailing of the seed-nanowire interface [2, 5, 9, 12]. There are therefore distinct features of the solid phase seeding mechanism that potentially offer opportunities for the controlled processing of nanomaterials with new physical properties. A superior control over the growth kinetics of nanowires could be achieved by controlling the inherent growth constraints instead of external parameters which always account for instrumental inaccuracy. The high dopant concentrations in semiconductor nanowires can result from unintentional incorporation of atoms from the metal seed material, as described for the Al catalyzed VLS growth of Si nanowires [13] which can in turn be depressed by solid-phase seeding. In addition, the creation of very sharp interfaces between group IV semiconductor segments has been achieved by solid seeds [14], whereas the traditionally used liquid Au particles often leads to compositional tailing of the interface [15] . Korgel et al. also described the superior size retention of metal seeds in a SFSS nanowire growth process, when compared to a SFLS process using Au colloids [12]. Here in this work we have used silver and alloy seed particle with different compositions to manipulate the growth of nanowires in sub-eutectic regime. The solid seeding approach also gives an opportunity to influence the crystallinity of the nanowires independent of the substrate. Taking advantage of the readily formation of stacking faults in metal nanoparticles, lamellar twins in nanowires could be formed.
Resumo:
The world's oceans are slowly becoming more acidic. In the last 150 yr, the pH of the oceans has dropped by ~0.1 units, which is equivalent to a 25% increase in acidity. Modelling predicts the pH of the oceans to fall by 0.2 to 0.4 units by the year 2100. These changes will have significant effects on marine organisms, especially those with calcareous skeletons such as echinoderms. Little is known about the possible long-term impact of predicted pH changes on marine invertebrate larval development. Here we predict the consequences of increased CO2 (corresponding to pH drops of 0.2 and 0.4 units) on the larval development of the brittlestar Ophiothrix fragilis, which is a keystone species occurring in high densities and stable populations throughout the shelf seas of northwestern Europe (eastern Atlantic). Acidification by 0.2 units induced 100% larval mortality within 8 d while control larvae showed 70% survival over the same period. Exposure to low pH also resulted in a temporal decrease in larval size as well as abnormal development and skeletogenesis (abnormalities, asymmetry, altered skeletal proportions). If oceans continue to acidify as expected, ecosystems of the Atlantic dominated by this keystone species will be seriously threatened with major changes in many key benthic and pelagic ecosystems. Thus, it may be useful to monitor O. fragilis populations and initiate conservation if needed.
Resumo:
Anthropogenic CO2 emissions are acidifying the world's oceans. A growing body of evidence is showing that ocean acidification impacts growth and developmental rates of marine invertebrates. Here we test the impact of elevated seawater pCO2 (129 Pa, 1271 µatm) on early development, larval metabolic and feeding rates in a marine model organism, the sea urchin Strongylocentrotus purpuratus. Growth and development was assessed by measuring total body length, body rod length, postoral rod length and posterolateral rod length. Comparing these parameters between treatments suggests that larvae suffer from a developmental delay (by ca. 8%) rather than from the previously postulated reductions in size at comparable developmental stages. Further, we found maximum increases in respiration rates of + 100 % under elevated pCO2, while body length corrected feeding rates did not differ between larvae from both treatments. Calculating scope for growth illustrates that larvae raised under high pCO2 spent an average of 39 to 45% of the available energy for somatic growth, while control larvae could allocate between 78 and 80% of the available energy into growth processes. Our results highlight the importance of defining a standard frame of reference when comparing a given parameter between treatments, as observed differences can be easily due to comparison of different larval ages with their specific set of biological characters.
Resumo:
Calcification in many invertebrate species is predicted to decline due to ocean acidification. The potential effects of elevated CO2 and reduced carbonate saturation state on other species, such as fish, are less well understood. Fish otoliths (earbones) are composed of aragonite, and thus, might be susceptible to either the reduced availability of carbonate ions in seawater at low pH, or to changes in extracellular concentrations of bicarbonate and carbonate ions caused by acid-base regulation in fish exposed to high pCO2. We reared larvae of the clownfish Amphiprion percula from hatching to settlement at three pHNBS and pCO2 levels (control: ~pH 8.15 and 404 µatm CO2; intermediate: pH 7.8 and 1050 µatm CO2; extreme: pH 7.6 and 1721 µatm CO2) to test the possible effects of ocean acidification on otolith development. There was no effect of the intermediate treatment (pH 7.8 and 1050 µatm CO2) on otolith size, shape, symmetry between left and right otoliths, or otolith elemental chemistry, compared with controls. However, in the more extreme treatment (pH 7.6 and 1721 µatm CO2) otolith area and maximum length were larger than controls, although no other traits were significantly affected. Our results support the hypothesis that pH regulation in the otolith endolymph can lead to increased precipitation of CaCO3 in otoliths of larval fish exposed to elevated CO2, as proposed by an earlier study, however, our results also show that sensitivity varies considerably among species. Importantly, our results suggest that otolith development in clownfishes is robust to even the more pessimistic changes in ocean chemistry predicted to occur by 2100.
Resumo:
The subfornical organ (SFO) is a critical circumventricular organ involved in the control of cardiovascular and metabolic homeostasis. Despite the abundant literature clearly demonstrating the ability of SFO neurons to sense and respond to a plethora of circulating signals that influence various physiological systems, investigation of how simultaneously sensed signals interact and are integrated in the SFO is lacking. In this study, we use patch clamp techniques to investigate how the traditionally classified ‘cardiovascular’ hormone angiotensin II (ANG), ‘metabolic’ hormone cholecystokinin (CCK) and ‘metabolic’ signal glucose interact and are integrated in the SFO. Sequential bath-application of CCK (10nM) and ANG (10nM) onto dissociated SFO neurons revealed that: 63% of responsive SFO neurons depolarized to both CCK & ANG; 25% depolarized to ANG only; and 12% hyperpolarized to CCK only. We next investigated the effects of glucose by incubating and recording neurons in either hypo-, normo- or hyperglycemic conditions for a minimum of 24 hours and comparing the proportions of responses to ANG (n=55) or CCK (n=83) application in each condition. A hyperglycemic environment was associated with a larger proportion of depolarizing responses to ANG (X2, p<0.05), and a smaller proportion of depolarizing responses along with a larger proportion of hyperpolarizing responses to CCK (X2, p<0.01). These data demonstrate that SFO neurons excited by CCK are also excited by ANG, suggesting that CCK may influence fluid intake or blood pressure via the SFO, complementary to the well-understood actions of ANG at this site. Additionally, the demonstration that glucose environment affects the responsiveness of neurons to both these hormones highlights the ability of SFO neurons to integrate multiple metabolic and cardiovascular signals to affect transmission of information from the circulation to the brain, which has important implications for this structure’s critical role regulation of autonomic function.
Resumo:
Grazing mollusks are used as a food resource worldwide, and limpets are harvested commercially for both local consumption and export in several countries. This study describes a field experiment to assess the effects of simulated human exploitation of limpets Patella vulgata on their population ecology in terms of protandry (age-related sex change from male to female), growth, recruitment, migration, and density regulation. Limpet populations at two locations in southwest England were artificially exploited by systematic removal of the largest individuals for 18 months in plots assigned to three treatments at each site: no (control), low, and high exploitation. The shell size at sex change (L50: the size at which there is a 50:50 sex ratio) decreased in response to the exploitation treatments, as did the mean shell size of sexual stages. Size-dependent sex change was indicated by L50 occurring at smaller sizes in treatments than controls, suggesting an earlier switch to females. Mean shell size of P. vulgata neuters changed little under different levels of exploitation, while males and females both decreased markedly in size with exploitation. No differences were detected in the relative abundances of sexual stages, indicating some compensation for the removal of the bigger individuals via recruitment and sex change as no migratory patterns were detected between treatments. At the end of the experiment, 0–15 mm recruits were more abundant at one of the locations but no differences were detected between treatments. We conclude that sex change in P. vulgata can be induced at smaller sizes by reductions in density of the largest individuals reducing interage class competition. Knowledge of sex-change adaptation in exploited limpet populations should underpin strategies to counteract population decline and improve rocky shore conservation and resource management.