992 resultados para optical planar waveguides
Resumo:
Ultrasonic is a good tool to investigate the elastic properties of crystals. It enables one to determine all the elastic constants, Poisson’s ratios, volume compressibility and bulk modulus of crystals from velocity measurements. It also enables one to demonstrate the anisotropy of elastic properties by plotting sections of the surfaces of phase velocity, slowness, group velocity, Young’s modulus and linear compressibility along the a-b, b-c and a-c planes. They also help one to understand more about phonon amplification and help to interpret various phenomena associated with ultrasonic wave propagation, thermal conductivity, phonon transport etc. Study of nonlinear optical crystals is very important from an application point of view. Hundreds of new NLO materials are synthesized to meet the requirements for various applications. Inorganic, organic and organometallic or semiorganic classes of compounds have been studied for several reasons. Semiorganic compounds have some advantages over their inorganic and inorganic counterparts with regard to their mechanical properties. High damage resistance, high melting point, good transparency and non-hygroscopy are some of the basic requirements for a material to be suitable for device fabrication. New NLO materials are being synthesized and investigation of the mechanical and elastic properties of these crystals is very important to test the suitability of these materials for technological applications
Resumo:
A single-feed rectangular-ring microstrip antenna is proposed for indoor communication under the Bluetooth protocol. The dimensions of the antenna together with the location of the feed point are optimized through field simulations in order to cover the Bluetooth bandwidth and to avoid linear polarization. The performance and the efficiency of the antenna are illustrated in a real indoor environment
Resumo:
A compact single –feed multiband planar antenna configuration Suitable for GPS, DCS. 2.4/5.8 GHz WLAN applications are presented. The antenna has dimensions 38 x 3 x 1.6 mm and offers good radiation and reflection characteristics in the above frequency bands. The antenna has a simple geometry and can be easily fed using a 50 coaxial probe
Resumo:
The operation of a previously proposed terahertz (THZ) detector is formulated in detail. The detector is based on the hot-electron effect of the 2D electron gas (2DEG) in the quantum well (QW) of a GaAs/AIGaAs heterostructure. The interaction between the THz radiation and the 2DEG, the current enhancement due to hot -electron effect, and the noise performance of the detector are analyzed
Resumo:
In this paper, microstrip lines magnetically coupled to splitring resonators (SRRs) are conquved to electromagnetic bundgup (EBG) nr,rrostrip lines in terns q/ their stop-heard penjbrnmrnce and dimensions. In bath types o/ trunsmis•siou lines, signal propagation is inhibited in it certain jequency bwuL For EBG microstrip lines, the central frequency of such a forbidden band is determined by the period of the structure, whereas in SRR-hased microstrip lines the position of the frequency gap depends on the quasi-static resonant frequency of the rings. The main relevant conrributiun of this paper is to provide a tuning procedure to control the gap width in SRR microstrip lines, and to show that by using SRRs, device dimensions ale much smaller than those required by EBGs in order to obtain similar stop-banal performance. This has been demonstrated by fill-wave electromagnetic simulations and experimentally verified from the characterization ql two fabricated microstrip lines: one with rectangular SRRs etched on the upper substrate side, and the other with a periodic perturbation cf'strip width. For similar rejection and 1-(;H,. gap width centered at 4.5 Gllz, it has been found that the SRR microstrip line is•,fve times shorter. In addition, no ripple is appreciable in the allowed band for the .SRR-hared structure, whereas due to dispersion, certain mismatch is expected in the EBG prototype. Due to the high-frequency selectivity, controllable gap width, and small dimensions, it is believed that SRR coupled to planar transmission lines can have an actual impact on the design of stop-band filters compatible with planar technology, and can be an alternative to present solutions based on distributed approaches or EBG
Resumo:
novel design of at internal PIFA integrated with an RF-shielding metal case for application in a clamshell or fielder-tvpe mobile phone is presented. The integrated PIFA has a bent and tapered radiating arm in order to easily fit in the casing of the clamshell mobile phone as an internal antenna. The integrated PlEA can also provide a wide operating bandwidth fir UM7S (1920-2170 MHz) operation. In addition, for the clamshell mobile phone in either the talk or standby condition, only a small effect on the operating bandwidth of the integrated PIFA is obtained. The experimental results of the proposed design are presented
Resumo:
This thesis is entitled “OPTICAL EMISSION DIAGNOSTICS OF LASER PRODUCED PLASMA FROM GRAPHITE AND YBa2Cu3O7. The work presented in this thesis covers the experimental results on the plasma produced with moderately high power laser with irradiance range in between 10 GW cm 2 to 100 GW cm -2. The characterization of laser produced plasma from solid targets viz. graphite and high temperature superconducting material like YBa2Cu3O7 have been carried out. The fundamental frequency from a Q - switched Nd: YAG laser with 9 ns pulse duration is used for the present studies. Various optical emission emission diagnostic techniques were employed for the the characterization of the LPP which include emission spectroscopy, time resolved studies, line broadening method etc. In order to understand the physical nature of the LPP like recombination, collisional excitation and the laser interaction with plasma, the time resolved studies offer the most logical approach
Resumo:
A compact single - feed muttiband planar antenna configuration suitable for GPS, DCS. 2.4/5.8 GHz WLAN applications is presented. The antenna has dimensions 38 x 3 x 1.6 mm and offers good radiation and reflection characteristics in the above frequency bands. The antenna has a simple geometry and can be easily fed using a 50 coaxial probe.
Resumo:
The spectral and nonlinear optical characteristics of nano ZnO and its composites are investigated. The fluorescence behaviour of nano colloids of ZnO has been studied as a function of the excitation wavelength and there is a red shift in emission peak with excitation wavelength. Apart from the observation of the reported ultra violet and green emissions, our results reveal that additional blue emissions at 420 nm and 490 nm are developed with increasing particle size. Systematic studies on nano ZnO have indicated the presence of luminescence due to excitonic emissions when excited with 255 nm as well as significant contribution from surface defect states when excited with 325 nm. In the weak confinement regime, the third-order optical susceptibility χ(3) increases with increasing particle size (R) and annealing temperature (T) and a R2 and T2.5 dependence of χ(3) is obtained for nano ZnO. ZnO nanocolloids exhibit induced absorption whereas the self assembled films of ZnO exhibit saturable absorption due to saturation of linear absorption of ZnO defect states and electronic effects. ZnO nanocomposites exhibit negative nonlinear index of refraction which can be attributed to two photon absorption followed by weak free carrier absorption. The increase of the third-order nonlinearity in the composites can be attributed to the enhancement of exciton oscillator strength. The nonlinear response of ZnO nanocomposites is wavelength dependent and switching from induced absorption to saturable absorption has been observed at resonant wavelengths. Such a change-over is related to the interplay of plasmon/exciton band bleach and optical limiting mechanisms. This study is important in identifying the spectral range and the composition over which the nonlinear material acts as an optical limiter. ZnO based nanocomposites are potential materials for enhanced and tunable light emission and for the development of nonlinear optical devices with a relatively small optical limiting threshold.