981 resultados para optical computed tomography


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Imaging diagnosis is a medical specialty that uses imaging techniques to perform diagnosis. In diagnostic imaging various methods are used such as direct absorption of photons - SPA and DPA, radiographic photometry, the dual-energy radiographic absorptiometry - DEXA, ultrasound, magnetic resonance imaging, computed tomography and optical densitometry in radiographic image. The dog can be considered one of the most widely used animals in the study of bone diseases and searching for a reliable diagnosis, although not an ideal model for the study of osteoporosis, because these animals tend not to develop a decrease in bone mineral density. The objective of this study was to analyze bone density in mongrel dogs from the determination of the variation of density along the radio-ulna bone and also the mean value related to gender, weight and age of individuals. The density analysis carried out showed that for this data set, there is a significant difference in the case of gender and age of the animal and may generalize according to these variables. The only significant difference was found in the weight, which increases bone mass is related to weight gain through the growth of the animal

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cone beam computed tomography (CBCT) can be considered as a valuable imaging modality for improving diagnosis and treatment planning to achieve true guidance for several craniofacial surgical interventions. A new concept and perspective in medical informatics is the highlight discussion about the new imaging interactive workflow. The aim of this article was to present, in a short literature review, the usefulness of CBCT technology as an important alternative imaging modality, highlighting current practices and near-term future applications in cutting-edge thought-provoking perspectives for craniofacial surgical assessment. This article explains the state of the art of CBCT improvements, medical workstation, and perspectives of the dedicated unique hardware and software, which can be used from the CBCT source. In conclusion, CBCT technology is developing rapidly, and many advances are on the horizon. Further progress in medical workstations, engineering capabilities, and improvement in independent software-some open source-should be attempted with this new imaging method. The perspectives, challenges, and pitfalls in CBCT will be delineated and evaluated along with the technological developments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present article discusses an atrophic maxilla reconstruction with iliac crest bone block and particulate grafts and dental implants. Onlay block grafts were used to restore bone volume of the anterior maxilla, whereas bilateral sinus floor augmentation was performed using a particulate graft. Ten months after the grafting surgery, 9 dental implants were placed to rehabilitate the case. Results of a 7-year follow-up were obtained clinically and by cone beam computed tomographic images.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Borges JB, Suarez-Sipmann F, Bohm SH, Tusman G, Melo A, Maripuu E, Sandstrom M, Park M, Costa EL, Hedenstierna G, Amato M. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse. J Appl Physiol 112: 225-236, 2012. First published September 29, 2011; doi: 10.1152/japplphysiol.01090.2010.-The assessment of the regional match between alveolar ventilation and perfusion in critically ill patients requires simultaneous measurements of both parameters. Ideally, assessment of lung perfusion should be performed in real-time with an imaging technology that provides, through fast acquisition of sequential images, information about the regional dynamics or regional kinetics of an appropriate tracer. We present a novel electrical impedance tomography (EIT)-based method that quantitatively estimates regional lung perfusion based on first-pass kinetics of a bolus of hypertonic saline contrast. Pulmonary blood flow was measured in six piglets during control and unilateral or bilateral lung collapse conditions. The first-pass kinetics method showed good agreement with the estimates obtained by single-photon-emission computerized tomography (SPECT). The mean difference (SPECT minus EIT) between fractional blood flow to lung areas suffering atelectasis was -0.6%, with a SD of 2.9%. This method outperformed the estimates of lung perfusion based on impedance pulsatility. In conclusion, we describe a novel method based on EIT for estimating regional lung perfusion at the bedside. In both healthy and injured lung conditions, the distribution of pulmonary blood flow as assessed by EIT agreed well with the one obtained by SPECT. The method proposed in this study has the potential to contribute to a better understanding of the behavior of regional perfusion under different lung and therapeutic conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The authors present a prospective study on the coexistence of spinal injury (SI) and severe traumatic brain injury (TBI) in patients who were involved in traffic accidents and arrived at the Emergency Department of Hospital das Clinicas of the University of Sao Paulo between September 1, 2003 and December 31, 2009. A whole-body computed tomography was the diagnostic method employed in all cases. Both lesions were observed simultaneously in 69 cases (19.4%), predominantly in males (57 individuals, 82.6%). Cranial injuries included epidural hematoma, acute subdural hematoma, brain contusion, ventricular hemorrhage and traumatic subarachnoid hemorrhage. The transverse processes were the most fragile portion of the vertebrae and were more susceptible to fractures. The seventh cervical vertebra was the most commonly affected segment, with 24 cases (34.78%). The distribution of fractures was similar among the other cervical vertebrae, the first four thoracic vertebrae and the lumbar spine. Neurological deficit secondary to SI was detected in eight individuals (11.59%) and two individuals (2.89%) died. Traumatic subarachnoid hemorrhage was the most common intracranial finding (82.6%). Spinal surgery was necessary in 24 patients (34.78%) and brain surgery in 18 (26%). Four patients (5.79%) underwent cranial and spinal surgeries. The authors conclude that it is necessary a judicious assessment of the entire spine of individuals who presented in coma after suffering a brain injury associated to multisystemic trauma and whole-body CT scan may play a major role in this scenario.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: This study aimed to describe the anatomy of mandibular premolars with type IX canal configuration by using micro–computed tomography. Methods: Mandibular premolars with radicular grooves (n = 105) were scanned, and 16 teeth with type IX configuration were selected. Number and location of canals, distances between anatomic landmarks, occurrence of apical delta, root canal fusion, and furcation canals, as well as 2-dimensional (area, perimeter, roundness, major and minor diameters) and 3-dimensional (volume, surface area, and structuremodel index) analysis were performed. Data were statistically compared by using analysis of variance and Kruskal-Wallis tests (a = 0.05). Results: Overall, specimens had 1 root with a main canal that divided into mesiobuccal, distobuccal, and lingual canals at the furcation level. Mean length of the teeth was 22.9 2.06 mm, and the configuration of the pulp chamber was mostly triangle-shaped. Mean distances from the furcation to the apex and cementoenamel junction were 9.14 2.07 and 5.59 2.19 mm, respectively. Apical delta, root canal fusion, and furcation canals were present in 4, 5, and 10 specimens, respectively. No statistical differences were found in the 2-dimensional and 3-dimensional analyses between root canals (P > .05). Conclusions: Type IX configuration of the root canal system was found in 16 of 105 mandibular premolars with radicular grooves. Most of the specimens had a triangle-shaped pulp chamber. Within this anatomic configuration, complexities of the root canal systems such as the presence of furcation canals, fusion of canals, oval-shaped canals in the apical third, small orifices at the pulp chamber level, and apical delta were also observed

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: This study aimed to evaluate the close proximity established between the maxillary sinus floor and posterior teeth roots apices by using cone-beam computed tomographic scanning. Methods: The relationship of maxillary sinuses and posterior teeth roots, which were divided into 2 groups, was analyzed using i-CAT Vision software (Imaging Sciences, Hatfield, PA). Group 1 included all root apices found in close contact with the maxillary sinus floor without sinus floor elevation, whereas group 2 included all root apices that were protruded within the sinus producing an elevation of the bony cortical. Results: A total of 100 maxillary sinuses and 601 roots apices were evaluated. Group 1 presented 130 of 601 (21.6%) roots and group 2 presented 86 of 601 (14.3%) roots. Conclusions: The second molar mesiobuccal root apex is frequently found in close proximity with the sinus floor, and the relation between these anatomic structures should be considered in order to prevent an iatrogenic procedure and minimize the risks from an infectious disease within the sinus

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main problem connected to cone beam computed tomography (CT) systems for industrial applications employing 450 kV X-ray tubes is the high amount of scattered radiation which is added to the primary radiation (signal). This stray radiation leads to a significant degradation of the image quality. A better understanding of the scattering and methods to reduce its effects are therefore necessary to improve the image quality. Several studies have been carried out in the medical field at lower energies, whereas studies in industrial CT, especially for energies up to 450 kV, are lacking. Moreover, the studies reported in literature do not consider the scattered radiation generated by the CT system structure and the walls of the X-ray room (environmental scatter). In order to investigate the scattering on CT projections a GEANT4-based Monte Carlo (MC) model was developed. The model, which has been validated against experimental data, has enabled the calculation of the scattering including the environmental scatter, the optimization of an anti-scatter grid suitable for the CT system, and the optimization of the hardware components of the CT system. The investigation of multiple scattering in the CT projections showed that its contribution is 2.3 times the one of primary radiation for certain objects. The results of the environmental scatter showed that it is the major component of the scattering for aluminum box objects of front size 70 x 70 mm2 and that it strongly depends on the thickness of the object and therefore on the projection. For that reason, its correction is one of the key factors for achieving high quality images. The anti-scatter grid optimized by means of the developed MC model was found to reduce the scatter-toprimary ratio in the reconstructed images by 20 %. The object and environmental scatter calculated by means of the simulation were used to improve the scatter correction algorithm which could be patented by Empa. The results showed that the cupping effect in the corrected image is strongly reduced. The developed CT simulation is a powerful tool to optimize the design of the CT system and to evaluate the contribution of the scattered radiation to the image. Besides, it has offered a basis for a new scatter correction approach by which it has been possible to achieve images with the same spatial resolution as state-of-the-art well collimated fan-beam CT with a gain in the reconstruction time of a factor 10. This result has a high economic impact in non-destructive testing and evaluation, and reverse engineering.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Acute type A aortic dissection is a serious emergency with a mortality rate of up to 40% within the first 24 h when left untreated. Surgical therapy needs to be initiated promptly. Due to this urgent situation, preoperative evaluation of the coronary arteries is not routinely performed in these patients. The aim of this study was to evaluate the accuracy of 64-slice computed tomography angiography (CTA) for postoperative coronary artery assessment in these patients. Ten consecutive patients with two or more cardiovascular risk factors were prospectively enrolled. Patients had type A aortic dissection treated surgically with a supracoronary graft of the ascending aorta. Performance of CTA to exclude significant stenosis (>50% lumen narrowing) and/or coronary artery dissection was compared with quantitative coronary angiography. A total of 147 segments were evaluated. Three segments (2%) were excluded from analysis. CTA correctly assessed one of three significant stenoses in three patients and correctly excluded coronary artery disease (CAD) in six of ten patients. One patient was rated false positive. Overall accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of CT for identifying coronary artery disease by segment was 98%, 33%, 99%, 50%, and 99%, respectively (P<0.05). By patient, it was 70%, 33%, 86%, 50%, and 75%, respectively. No coronary artery dissection was found. Noninvasive CTA may be a viable alternative to conventional angiography for postoperative coronary artery evaluation in patients with surgically treated type A aortic dissection and cardiovascular risk factors. An NPV of 99% should allow for reliable exclusion of CAD. Further studies with higher patient numbers are warranted.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coronary late stent thrombosis, a rare but devastating complication, remains an important concern in particular with the increasing use of drug-eluting stents. Notably, pathological studies have indicated that the proportion of uncovered coronary stent struts represents the best morphometric predictor of late stent thrombosis. Intracoronary optical frequency domain imaging (OFDI), a novel second-generation optical coherence tomography (OCT)-derived imaging method, may allow rapid imaging for the detection of coronary stent strut coverage with a markedly higher precision when compared with intravascular ultrasound, due to a microscopic resolution (axial approximately 10-20 microm), and at a substantially increased speed of image acquisition when compared with first-generation time-domain OCT. However, a histological validation of coronary OFDI for the evaluation of stent strut coverage in vivo is urgently needed. Hence, the present study was designed to evaluate the capacity of coronary OFDI by electron (SEM) and light microscopy (LM) analysis to detect and evaluate stent strut coverage in a porcine model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Optical coherence tomography (OCT) is a well-established image modality in ophthalmology and used daily in the clinic. Automatic evaluation of such datasets requires an accurate segmentation of the retinal cell layers. However, due to the naturally low signal to noise ratio and the resulting bad image quality, this task remains challenging. We propose an automatic graph-based multi-surface segmentation algorithm that internally uses soft constraints to add prior information from a learned model. This improves the accuracy of the segmentation and increase the robustness to noise. Furthermore, we show that the graph size can be greatly reduced by applying a smart segmentation scheme. This allows the segmentation to be computed in seconds instead of minutes, without deteriorating the segmentation accuracy, making it ideal for a clinical setup. An extensive evaluation on 20 OCT datasets of healthy eyes was performed and showed a mean unsigned segmentation error of 3.05 ±0.54 μm over all datasets when compared to the average observer, which is lower than the inter-observer variability. Similar performance was measured for the task of drusen segmentation, demonstrating the usefulness of using soft constraints as a tool to deal with pathologies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new image-guided microscope using augmented reality overlays has been developed. Unlike other systems, the novelty of our design consists in mounting a precise mini and low-cost tracker directly on the microscope to track the motion of the surgical tools and the patient. Correctly scaled cut-views of the pre-operative computed tomography (CT) stack can be displayed on the overlay, orthogonal to the optical view or even including the direction of a clinical tool. Moreover, the system can manage three-dimensional models for tumours or bone structures and allows interaction with them using virtual tools, showing trajectories and distances. The mean error of the overlay was 0.7 mm. Clinical accuracy has shown results of 1.1-1.8 mm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

INTRODUCTION: Recent advances in medical imaging have brought post-mortem minimally invasive computed tomography (CT) guided percutaneous biopsy to public attention. AIMS: The goal of the following study was to facilitate and automate post-mortem biopsy, to suppress radiation exposure to the investigator, as may occur when tissue sampling under computer tomographic guidance, and to minimize the number of needle insertion attempts for each target for a single puncture. METHODS AND MATERIALS: Clinically approved and post-mortem tested ACN-III biopsy core needles (14 gauge x 160 mm) with an automatic pistol device (Bard Magnum, Medical Device Technologies, Denmark) were used for probe sampling. The needles were navigated in gelatine/peas phantom, ex vivo porcine model and subsequently in two human bodies using a navigation system (MEM centre/ISTB Medical Application Framework, Marvin, Bern, Switzerland) with guidance frame and a CT (Emotion 6, Siemens, Germany). RESULTS: Biopsy of all peas could be performed within a single attempt. The average distance between the inserted needle tip and the pea centre was 1.4mm (n=10; SD 0.065 mm; range 0-2.3 mm). The targets in the porcine liver were also accurately punctured. The average of the distance between the needle tip and the target was 0.5 mm (range 0-1 mm). Biopsies of brain, heart, lung, liver, pancreas, spleen, and kidney were performed on human corpses. For each target the biopsy needle was only inserted once. The examination of one body with sampling of tissue probes at the above-mentioned locations took approximately 45 min. CONCLUSIONS: Post-mortem navigated biopsy can reliably provide tissue samples from different body locations. Since the continuous update of positional data of the body and the biopsy needle is performed using optical tracking, no control CT images verifying the positional data are necessary and no radiation exposure to the investigator need be taken into account. Furthermore, the number of needle insertions for each target can be minimized to a single one with the ex vivo proven adequate accuracy and, in contrast to conventional CT guided biopsy, the insertion angle may be oblique. Navigation for minimally invasive tissue sampling is a useful addition to post-mortem CT guided biopsy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Non-invasive documentation methods such as surface scanning and radiological imaging are gaining in importance in the forensic field. These three-dimensional technologies provide digital 3D data, which are processed and handled in the computer. However, the sense of touch gets lost using the virtual approach. The haptic device enables the use of the sense of touch to handle and feel digital 3D data. The multifunctional application of a haptic device for forensic approaches is evaluated and illustrated in three different cases: the representation of bone fractures of the lower extremities, by traffic accidents, in a non-invasive manner; the comparison of bone injuries with the presumed injury-inflicting instrument; and in a gunshot case, the identification of the gun by the muzzle imprint, and the reconstruction of the holding position of the gun. The 3D models of the bones are generated from the Computed Tomography (CT) images. The 3D models of the exterior injuries, the injury-inflicting tools and the bone injuries, where a higher resolution is necessary, are created by the optical surface scan. The haptic device is used in combination with the software FreeForm Modelling Plus for touching the surface of the 3D models to feel the minute injuries and the surface of tools, to reposition displaced bone parts and to compare an injury-causing instrument with an injury. The repositioning of 3D models in a reconstruction is easier, faster and more precisely executed by means of using the sense of touch and with the user-friendly movement in the 3D space. For representation purposes, the fracture lines of bones are coloured. This work demonstrates that the haptic device is a suitable and efficient application in forensic science. The haptic device offers a new way in the handling of digital data in the virtual 3D space.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: To test the hypothesis that hyporeflective spaces in the neuroretina found on optical coherence tomography (OCT) examination have different optical reflectivities according to whether they are associated with exudation or degeneration. METHODS: Retrospective analysis of eyes with idiopathic perifoveal telangiectasia (IPT), diabetic macular edema (DME), idiopathic central serous chorioretinopathy (CSC), retinitis pigmentosa (RP), or cone dystrophy (CD) and eyes of healthy control subjects. OCT scans were performed. Raw scan data were exported and used to calculate light reflectivity profiles. Reflectivity data were acquired by projecting three rectangular boxes, each 50 pixels long and 5 pixels wide, into the intraretinal cystoid spaces, centrally onto unaffected peripheral RPE, and onto the prefoveolar vitreous. Light reflectivity in the retinal pigment epithelium (RPE), vitreous, and intraretinal spaces for the different retinal conditions and control subjects were compared. RESULTS: Reflectivities of the vitreous and the RPE were similar among the groups. Hyporeflective spaces in eyes with exudation (DME, RP, and CSC) had higher reflectivity compared with the mean reflectivity of the vitreous, whereas the cystoid spaces in the maculae of the eyes without exudation (CD and IPT) had a lower reflectivity than did the normal vitreous. CONCLUSIONS: Analysis of the light reflectivity profiles may be a tool to determine whether the density of hyporeflective spaces in the macula is greater or less than that of the vitreous, and may be a way to differentiate degenerative from exudative macular disease.