978 resultados para ocean heat content


Relevância:

30.00% 30.00%

Publicador:

Resumo:

New data show that the thermal field is definitely related to the geologic structure at depth and to other geophysical fields. Low heat-flow values along reliably established subsurface faults suggest absence of a heated zone of the earth's crust and upper mantle in these regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An overview is presented of the current state of knowledge on paleo-ecological aspects of calcareous dinoflagellate resting cysts. Apart from literature-based information, a discussion of new results is also provided from Equatorial Atlantic surface plankton samples, surface sediment samples and Late Quaternary sediments from two gravity cores. With the aid of redundancy analysis statistics, variations in the calcareous cyst content of both cores are correlated to variations in total organic carbon (TOC). On a global scale, the calcareous cyst distribution in bottom sediments varies with latitude and inshore-offshore gradients. In the Equatorial Atlantic Ocean, enhanced calcareous cyst production can be observed in regions and time intervals with stratified, oligotrophic conditions in the upper water masses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mineralogical and H, O, Sr, and Nd isotope compositions have been analyzed on a set of representative samples from the 17-m.y. section in ODP Leg 116 Holes 717C and 718C. Based on the mineralogical composition of the fraction <2 µm together with the lithogenic-biogenic composition of the fraction >63 µm, the whole section can be subdivided into three major periods of sedimentation. Between 17.1 and 6 m.y., and between 0.8 m.y. to present, the sediments are characterized by sandy and silty turbiditic inputs with a high proportion of minerals derived from a gneissic source without alteration. In the fraction <2 µm, illite and chlorite are dominant over smectite and kaolinite. The granulometric fraction >63 µm contains quartz, muscovite, biotite, chlorite, and feldspars. The 6-to 0.8-m.y. period is represented by an alternation of sandy/silty horizons, muds, and calcareous muds rich in smectite, and kaolinite (50% to 85% of the fraction <2 µm) and bioclastic material. The presence of smectite and kaolinite, as well as the 18O/16O and the 87Sr/86Sr ratios of the fraction <2 µm, imply an evolution in a soil environment and exchanges with meteoric ground water. The ranges of isotopic compositions are limited throughout the section: d18O quartz = 11.7 to 13.3 per mil, 87Sr/86Sr = 0.733 to 0.760 and epsilon-Nd (0) = -17.4 to -13.8. These values are within those of the High Himalaya Crystalline series, and they are considered to reflect this source region. The data imply that, since 17 Ma, this formation has supplied the major part of the eroded material.