935 resultados para nutrient structures of seawater
Resumo:
Recently, a large family of transducer proteins in the Archaeon Halobacterium salinarium was identified. On the basis of the comparison of the predicted structural domains of these transducers, three distinct subfamilies of transducers were proposed. Here we report isolation, complete gene sequences, and analysis of the encoded primary structures of transducer gene htrII, a member of family B, and its blue light receptor gene (sopII) of sensory rhodopsin II (SRII). The start codon ATG of the 714-bp sopII gene is one nucleotide beyond the termination codon TGA of the 2298-bp htrII gene. The deduced protein sequence of HtrII predicts a eubacterial chemotaxis transducer type with two hydrophobic membrane-spanning segments connecting sizable domains in the periplasm and cytoplasm. HtrII has a common feature with HtrI, the sensory rhodopsin I transducer; like HtrI, HtrII possesses a hydrophilic loop structure just after the second transmembrane segment. The C-terminal 299 residues (765 amino acid residues total) of HtrII show strong homology to the signaling and methylation domain of eubacterial transducer Tsr. The hydropathy plot of the primary structure of SRII indicates seven membrane-spanning alpha-helical segments, a characteristic feature of retinylidene proteins ("rhodopsins") from a widespread family of photoactive pigments. SRII shows high identity with SRI (42%), bacteriorhodopsin (BR) (32%), and halorhodopsin (24%). The crucial positions for retinal binding sites in these proteins are nearly identical, with the exception of Met-118 (numbering according to the mature BR sequence), which is replaced by Val in SRII. In BR, residues Asp-85 and Asp-96 are crucial in proton pumping. In SRII, the position corresponding to Asp-85 in BR is conserved, but the corresponding position of Asp-96 is replaced by an aromatic Tyr. Coexpression of the htrII and sopII genes restores SRII phototaxis to a mutant (Pho81) that contains a deletion in the htrI/sopI and insertion in htrII/sopII regions. This paper describes the first example that both HtrI and HtrII exist in the same halobacterial cell, confirming that different sensory rhodopsins SRI and SRII in the same organism have their own distinct transducers.
Resumo:
Tumor-derived adhesion factor (TAF) was previously identified as a cell adhesion molecule secreted by human bladder carcinoma cell line EJ-1. To elucidate the physiological function of TAF, we examined its distribution in human normal and tumor tissues. Immunochemical staining with an anti-TAF monoclonal antibody showed that TAF was specifically accumulated in small blood vessels and capillaries within and adjacent to tumor nests, but not in those in normal tissues. Tumor blood vessel-specific staining of TAF was observed in various human cancers, such as esophagus, brain, lung, and stomach cancers. Double immunofluorescent staining showed apparent colocalization of TAF and type IV collagen in the vascular basement membrane. In vitro experiments demonstrated that TAF preferentially bound to type IV collagen among various extracellular matrix components tested. In cell culture experiments, TAF promoted adhesion of human umbilical vein endothelial cells to type IV collagen substrate and induced their morphological change. Furthermore, when the endothelial cells were induced to form capillary tube-like structures by type I collagen, TAF and type IV collagen were exclusively detected on the tubular structures. The capillary tube formation in vitro was prevented by heparin, which inhibited the binding of TAF to the endothelial cells. These results strongly suggest that TAF contributes to the organization of new capillary vessels in tumor tissues by modulating the interaction of endothelial cells with type IV collagen.
Resumo:
The human immunodeficiency virus type 1 (HIV-1) matrix protein forms a structural shell associated with the inner viral membrane and performs other essential functions throughout the viral life cycle. The crystal structure of the HIV-1 matrix protein, determined at 2.3 angstrom resolution, reveals that individual matrix molecules are composed of five major helices capped by a three-stranded mixed beta-sheet. Unexpectedly, the protein assembles into a trimer in three different crystal lattices, burying 1880 angstrom2 of accessible surface area at the trimer interfaces. Trimerization appears to create a large, bipartite membrane binding surface in which exposed basic residues could cooperate with the N-terminal myristoyl groups to anchor the protein on the acidic inner membrane of the virus.
Resumo:
Methods of structural and statistical analysis of the relation between the sequence and secondary and three-dimensional structures are developed. About 5000 secondary structures of immunoglobulin molecules from the Kabat data base were predicted. Two statistical analyses of amino acids reveal 47 universal positions in strands and loops. Eight universally conservative positions out of the 47 are singled out because they contain the same amino acid in > 90% of all chains. The remaining 39 positions, which we term universally alternative positions, were divided into five groups: hydrophobic, charged and polar, aromatic, hydrophilic, and Gly-Ala, corresponding to the residues that occupied them in almost all chains. The analysis of residue-residue contacts shows that the 47 universal positions can be distinguished by the number and types of contacts. The calculations of contact maps in the 29 antibody structures revealed that residues in 24 of these 47 positions have contacts only with residues of antiparallel beta-strands in the same beta-sheet and residues in the remaining 23 positions always have far-away contacts with residues from other beta-sheets as well. In addition, residues in 6 of the 47 universal positions are also involved in interactions with residues of the other variable or constant domains.
Resumo:
The diphtheria tox repressor (DtxR) of Corynebacterium diphtheriae plays a critical role in the regulation of diphtheria toxin expression and the control of other iron-sensitive genes. The crystal structures of apo-DtxR and of the metal ion-activated form of the repressor have been solved and used to identify motifs involved in DNA and metal ion binding. Residues involved in binding of the activated repressor to the diphtheria tox operator, glutamine 43, arginine 47, and arginine 50, were located and confirmed by site-directed mutagenesis. Previous biochemical and genetic data can be explained in terms of these structures. Conformational differences between apo- and Ni-DtxR are discussed with regard to the mechanism of action of this repressor.
Resumo:
Three sets of laboratory column experimental results concerning the hydrogeochemistry of seawater intrusion have been modelled using two codes: ACUAINTRUSION (Chemical Engineering Department, University of Alicante) and PHREEQC (U.S.G.S.). These reactive models utilise the hydrodynamic parameters determined using the ACUAINTRUSION TRANSPORT software and fit the chloride breakthrough curves perfectly. The ACUAINTRUSION code was improved, and the instabilities were studied relative to the discretisation. The relative square errors were obtained using different combinations of the spatial and temporal steps: the global error for the total experimental data and the partial error for each element. Good simulations for the three experiments were obtained using the ACUAINTRUSION software with slight variations in the selectivity coefficients for both sediments determined in batch experiments with fresh water. The cation exchange parameters included in ACUAINTRUSION are those reported by the Gapon convention with modified exponents for the Ca/Mg exchange. PHREEQC simulations performed using the Gains-Thomas convention were unsatisfactory, with the exchange coefficients from the database of PHREEQC (or range), but those determined with fresh water – natural sediment allowed only an approximation to be obtained. For the treated sediment, the adjusted exchange coefficients were determined to improve the simulation and are vastly different from those from the database of PHREEQC or batch experiment values; however, these values fall in an order similar to the others determined under dynamic conditions. Different cation concentrations were simulated using two different software packages; this disparity could be attributed to the defined selectivity coefficients that affect the gypsum equilibrium. Consequently, different calculated sulphate concentrations are obtained using each type of software; a smaller mismatch was predicted using ACUAINTRUSION. In general, the presented simulations by ACUAINTRUSION and PHREEQC produced similar results, making predictions consistent with the experimental data. However, the simulated results are not identical to the experimental data; sulphate (total S) is overpredicted by both models, most likely due to such factors as the kinetics of gypsum, the possible variations in the exchange coefficients due to salinity and the neglect of other processes.
Resumo:
The concepts of substantive beliefs and derived beliefs are defined, a set of substantive beliefs S like open set and the neighborhood of an element substantive belief. A semantic operation of conjunction is defined with a structure of an Abelian group. Mathematical structures exist such as poset beliefs and join-semilattttice beliefs. A metric space of beliefs and the distance of belief depending on the believer are defined. The concepts of closed and opened ball are defined. S′ is defined as subgroup of the metric space of beliefs Σ and S′ is a totally limited set. The term s is defined (substantive belief) in terms of closing of S′. It is deduced that Σ is paracompact due to Stone's Theorem. The pseudometric space of beliefs is defined to show how the metric of the nonbelieving subject has a topological space like a nonmaterial abstract ideal space formed in the mind of the believing subject, fulfilling the conditions of Kuratowski axioms of closure. To establish patterns of materialization of beliefs we are going to consider that these have defined mathematical structures. This will allow us to understand better cultural processes of text, architecture, norms, and education that are forms or the materialization of an ideology. This materialization is the conversion by means of certain mathematical correspondences, of an abstract set whose elements are beliefs or ideas, in an impure set whose elements are material or energetic. Text is a materialization of ideology.
Resumo:
Mythical and religious belief systems in a social context can be regarded as a conglomeration of sacrosanct rites, which revolve around substantive values that involve an element of faith. Moreover, we can conclude that ideologies, myths and beliefs can all be analyzed in terms of systems within a cultural context. The significance of being able to define ideologies, myths and beliefs as systems is that they can figure in cultural explanations. This, in turn, means that such systems can figure in logic-mathematical analyses.