930 resultados para normalized heating parameter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The geometry of the Tonga Arc implies that it has rotated approximately 17° clockwise away from the Lau Ridge as the Lau Basin formed in between. Questions have arisen about the timing of the opening, whether the arc behaved rigidly, and whether the opening occurred instead from motion of the Lau Ridge, the remanent arc. We undertook to address these questions by taking paleomagnetic samples from sediment cores drilled on the Tonga Arc at Sites 840 and 841, orienting the samples in azimuth, and comparing the paleodeclinations to expected directions. Advanced hydraulic piston corer (APC) cores from Holes 840C and 841A were oriented during drilling with a tool based on a magnetic compass and attached to the core barrel. Samples from Hole 841B were drilled with a rotary core barrel (RCB) and therefore are azimuthally unoriented. They were oriented by identifying faults and dipping beds in the core and aligning them with the same features in the Formation MicroScanner (FMS) wireline logs, which were themselves oriented with a three-axis magnetometer in the FMS tool. The best results came from the APC cores, which yielded a mean pole at -69.0°S, 112.2°E for an age of 4 Ma. This pole implies a declination anomaly of 20.8° ± 12.6° (95% confidence limit), which appears to have occurred by tectonic rotation of the Tonga Arc. This value is almost exactly that expected from the geometry of the arc and implies that it did indeed rotate clockwise as a rigid body. The large uncertainty in azimuth results from core orientation errors, which have an average standard deviation of 18.6°. The youngest cores used to calculate the APC pole contain sediments deposited during Subchron 2A (2.48-3.40 Ma), and their declinations are indistinguishable from the others. This observation suggests that most of the rotation occurred after their deposition; this conclusion must be treated with caution, however, because of the large azimuthal orientation errors. Poles from late and early Miocene sediments of Hole 841B are more difficult to interpret. Samples from this hole are mostly normal in polarity, fail a reversal test, and yield poles that suggest that the normal-polarity directions may be a recent overprint. Late Miocene reversed-polarity samples may be unaffected by this overprint; if so, they imply a declination anomaly of 51.1° ± 11.5°. This observation may indicate that, for older sediments, Tonga forearc rotations are larger than expected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analogous to West- and North Africa, East Africa experienced more humid conditions between approximately 12 to 5 kyr BP, relative to today. While timing and extension of wet phases in the North and West are well constrained, this is not the case for the East African Humid Period. Here we present a record of benthic foraminiferal assemblages and sediment elemental compositions of a sediment core from the East African continental slope, in order to provide insight into the regional shallow Indian Ocean paleoceanography and East African climate history of the last 40 kyr. During glacial times, the dominance of a benthic foraminiferal assemblage characterized by Bulimina aculeata, suggests enhanced surface productivity and sustained flux of organic carbon to the sea floor. During Heinrich Stadial 1 (H1), the Nuttallides rugosus Assemblage indicates oligotrophic bottom water conditions and therefore implies a stronger flow of southern-sourced AAIW to the study site. During the East African Humid Period, the Saidovina karreriana Assemblage in combination with sedimentary C/N and Fe/Ca ratios suggest higher river runoff to the Indian Ocean, and hence more humid conditions in East Africa. Between 8.5 and 8.1 kyr, contemporaneous to the globally documented 8.2 kyr Event, a severe reduction in river deposits implies more arid conditions on the continent. Comparison of our marine data with terrestrial studies suggests that additional moisture from the Atlantic Ocean, delivered by an eastward migration of the Congo Air Boundary during that time period, could have contributed to East African rainfall. Since approximately 9 kyr, the gaining influence of the Millettiana millettii Assemblage indicates a redevelopment of the East African fringe reefs.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Net Primary Production was measured using the 14**C uptake method with minor modifications. Melt pond samples were spiked with 0.1µCi ml**-1 of 14**C labelled sodium bicarbonate (Moravek Biochemicals, Brea, USA) and distributed in 10 clear bottles (20 ml each). Subsequently they were incubated for 12 h at -1.3°C under different scalar irradiances (0-420 µmol photons m**-2 s**-1) measured with a spherical sensor (Spherical Micro Quantum Sensor US-SQS/L, Heinz Walz, Effeltrich, Germany). At the end of the incubation, samples were filtered onto 0.2 µm nitrocellulose filters and the particulate radioactive carbon uptake was determined by liquid scintillation counting using Filter count scintillation cocktail (Perkin Elmer, Waltham, USA). The carbon uptake values in the dark were subtracted from the carbon uptake values measured in the light incubations. Dissolved inorganic carbon (DIC) was measured for each sample using the flow injection system (Hall and Aller, 1992). The DIC concentration was taken into account to calculate the amount of labeled bicarbonate incorporated into the cell. Carbon fixation rates were normalized volumetrically and by chlorophyll a. Photosynthesis-irradiance curves (PI curves) were fitted using MATLAB® according to the equation proposed by Platt et al. (1980) including a photoinhibition parameter (beta) and providing the main photosynthetic parameters: maximum Chla normalized carbon fixation rate if there were no photoinhibition (Pb) and the initial slope of the saturation curve (alpha). The derived parameters: light intensity at which photosynthesis is maximal (Im), the carbon fixation rate at that maximal irradiance (Pbm) and the adaptation parameter or photoacclimation index (Ik) were calculated according to Platt et al. (1982).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Net Primary Production was measured using the 14**C uptake method with minor modifications. Seawater samples were spiked with 0.1µCi ml**-1 of 14**C labelled sodium bicarbonate (Moravek Biochemicals, Brea, USA) and distributed in 10 clear bottles (20 ml each). Subsequently they were incubated for 12 h at -1.3°C under different scalar irradiances (0-420 µmol photons m**-2 s**-1) measured with a spherical sensor (Spherical Micro Quantum Sensor US-SQS/L, Heinz Walz, Effeltrich, Germany). At the end of the incubation, samples were filtered onto 0.2 µm nitrocellulose filters and the particulate radioactive carbon uptake was determined by liquid scintillation counting using Filter count scintillation cocktail (Perkin Elmer, Waltham, USA). The carbon uptake values in the dark were subtracted from the carbon uptake values measured in the light incubations. Dissolved inorganic carbon (DIC) was measured for each sample using the flow injection system (Hall and Aller, 1992). The DIC concentration was taken into account to calculate the amount of labeled bicarbonate incorporated into the cell. Carbon fixation rates were normalized volumetrically and by chlorophyll a. Photosynthesis-irradiance curves (PI curves) were fitted using MATLAB® according to the equation proposed by Platt et al. (1980) including a photoinhibition parameter (beta) and providing the main photosynthetic parameters: maximum Chla normalized carbon fixation rate if there were no photoinhibition (Pb) and the initial slope of the saturation curve (alpha). The derived parameters: light intensity at which photosynthesis is maximal (Im), the carbon fixation rate at that maximal irradiance (Pbm) and the adaptation parameter or photoacclimation index (Ik) were calculated according to Platt et al. (1982).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Net Primary Production was measured using the 14**C uptake method with minor modifications. Melted sea ice samples were spiked with 0.1µCi ml**-1 of 14**C labelled sodium bicarbonate (Moravek Biochemicals, Brea, USA) and distributed in 10 clear bottles (20 ml each). Subsequently they were incubated for 12 h at -1.3°C under different scalar irradiances (0-420 µmol photons m**-2 s**-1) measured with a spherical sensor (Spherical Micro Quantum Sensor US-SQS/L, Heinz Walz, Effeltrich, Germany). At the end of the incubation, samples were filtered onto 0.2 µm nitrocellulose filters and the particulate radioactive carbon uptake was determined by liquid scintillation counting using Filter count scintillation cocktail (Perkin Elmer, Waltham, USA). The carbon uptake values in the dark were subtracted from the carbon uptake values measured in the light incubations. Dissolved inorganic carbon (DIC) was measured for each sample using the flow injection system (Hall and Aller, 1992). The DIC concentration was taken into account to calculate the amount of labeled bicarbonate incorporated into the cell. Carbon fixation rates were normalized volumetrically and by chlorophyll a. Photosynthesis-irradiance curves (PI curves) were fitted using MATLAB® according to the equation proposed by Platt et al. (1980) including a photoinhibition parameter (beta) and providing the main photosynthetic parameters: maximum Chla normalized carbon fixation rate if there were no photoinhibition (Pb) and the initial slope of the saturation curve (alpha). The derived parameters: light intensity at which photosynthesis is maximal (Im), the carbon fixation rate at that maximal irradiance (Pbm) and the adaptation parameter or photoacclimation index (Ik) were calculated according to Platt et al. (1982).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to find out if there is a significant difference in using NDVI dataset processed by harmonic analysis method to evaluate its dynamic and response to climate change, compared with the original data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finding the ideal deep-sea CaCO3 dissolution proxy is essential for quantifying the role of the marine carbonate system in regulating atmospheric pCO2 over millennia. We explore the potential of using the Globorotalia menardii fragmentation index (MFI) and size-normalized foraminifer shell weight (SNSW) as complementary indicators of deep-sea CaCO3 dissolution. MFI has strong correlations with bottom water [CO3]2-, modeled estimates of percent CaCO3 dissolved, and Mg/Ca in Pulleniatina obliquiloculata in core top samples along a depth transect on the Ontong Java Plateau (OJP) where surface ocean temperature variation is minimal. SNSW of P. obliquiloculata and Neogloboquadrina dutertrei have weak correlations with MFI-based percent dissolved, Mg/Ca in P. obliquiloculata shells and bottom water [CO3]2- on the OJP. In core top samples from the eastern equatorial Pacific (EEP), SNSW of P. obliquiloculata has moderate to strong correlations with both MFI-based percent CaCO3 dissolved estimates and surface ocean environmental parameters. SNSW of N. dutertrei shells shows a latitudinal distribution in the EEP and a moderately strong correlation with MFI-based percent dissolved estimates when samples from the equatorial part of the region are excluded. Our results suggest that there may potentially be multiple genotypes of N. dutertrei in the EEP which may be reflected in their shell weight. MFI-based percent CaCO3 dissolved estimates have no quantifiable relationship with any surface ocean environmental parameter in the EEP. Thus MFI acts as a reliable quantitative CaCO3 dissolution proxy insensitive to environmental biases within calcification waters of foraminifers.