964 resultados para nonlinear partial differential equation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work has been to study the behaviour and performance of a batch chromatographic column under simultaneous bioreaction and separation conditions for several carbohydrate feedstocks. Four bioreactions were chosen, namely the hydrolysis of sucrose to glucose and fructose using the enzyme invertase, the hydrolysis of inulin to fructose and glucose using inulinase, the hydrolysis of lactose to glucose and galactose using lactase and the isomerization of glucose to fructose using glucose isomerase. The chromatographic columns employed were jacketed glass columns ranging from 1 m to 2 m long and the internal diameter ranging from 0.97 cm to 1.97 cm. The stationary phase used was a cation exchange resin (PUROLITE PCR-833) in the Ca2+ form for the hydrolysis and the Mg2+ form for the isomerization reactions. The mobile phase used was a diluted enzyme solution which was continuously pumped through the chromatographic bed. The substrate was injected at the top of the bed as a pulse. The effect of the parameters pulse size, the amount of substrate solution introduced into the system corresponding to a percentage of the total empty column volume (% TECV), pulse concentration, eluent flowrate and the enzyme activity of the eluent were investigated. For the system sucrose-invertase complete conversions of substrate were achieved for pulse sizes and pulse concentrations of up to 20% TECV and 60% w/v, respectively. Products with purity above 90% were obtained. The enzyme consumption was 45% of the amount theoretically required to produce the same amount of product as in a conventional batch reactor. A value of 27 kg sucrose/m3 resin/h for the throughput of the system was achieved. The systematic investigation of the factors affecting the performance of the batch chromatographic bioreactor-separator was carried out by employing a factorial experimental procedure. The main factors affecting the performance of the system were the flowrate and enzyme activity. For the system inulin-inulinase total conversions were also obtained for pulses sizes of up to 20 % TECV and a pulse concentration of 10 % w/v. Fructose rich fractions with 100 % purity and representing up to 99.4 % of the total fructose generated were obtained with an enzyme consumption of 32 % of the amount theoretically required to produce the same amount of product in a conventional batch reactor. The hydrolysis of lactose by lactase was studied in the glass columns and also in an SCCR-S unit adapted for batch operation, in co-operation with Dr. Shieh, a fellow researcher in the Chemical Engineering and Applied Chemistry Department at Aston University. By operating at up to 30 % w/v lactose feed concentrations complete conversions were obtained and the purities of the products generated were above 90%. An enzyme consumption of 48 % of the amount theoretically required to produce the same amount of product in a conventional batch reactor was achieved. On working with the system glucose-glucose isomerase, which is a reversible reaction, the separation obtained with the stationary phase conditioned in the magnesium form was very poor although the conversion obtained was compatible with those for conventional batch reactors. By working with a mixed pulse of enzyme and substrate, up to 82.5 % of the fructose generated with a purity of 100 % was obtained. The mathematical modelling and computer simulation of the batch chromatographic bioreaction-separation has been performed on a personal computer. A finite difference method was used to solve the partial differential equations and the simulation results showed good agreement with the experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When two solutions differing in solute concentration are separated by a porous membrane, the osmotic pressure will generate a net volume flux of the suspending fluid across the membrane; this is termed osmotic flow. We consider the osmotic flow across a membrane with circular cylindrical pores when the solute and the pore walls are electrically charged, and the suspending fluid is an electrolytic solution containing small cations and anions. Under the condition in which the radius of the pores and that of the solute molecules greatly exceed those of the solvent as well as the ions, a fluid mechanical and electrostatic theory is introduced to describe the osmotic flow in the presence of electric charge. The interaction energy, including the electrostatic interaction between the solute and the pore wall, plays a key role in determining the osmotic flow. We examine the electrostatic effect on the osmotic flow and discuss the difference in the interaction energy determined from the nonlinear Poisson-Boltzmann equation and from its linearized equation (the Debye-Hückel equation).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Cauchy problem for general elliptic second-order linear partial differential equations in which the Dirichlet data in H½(?1 ? ?3) is assumed available on a larger part of the boundary ? of the bounded domain O than the boundary portion ?1 on which the Neumann data is prescribed, is investigated using a conjugate gradient method. We obtain an approximation to the solution of the Cauchy problem by minimizing a certain discrete functional and interpolating using the finite diference or boundary element method. The minimization involves solving equations obtained by discretising mixed boundary value problems for the same operator and its adjoint. It is proved that the solution of the discretised optimization problem converges to the continuous one, as the mesh size tends to zero. Numerical results are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, an iterative algorithm based on the Landweber-Fridman method in combination with the boundary element method is developed for solving a Cauchy problem in linear hydrostatics Stokes flow of a slow viscous fluid. This is an iteration scheme where mixed well-posed problems for the stationary generalized Stokes system and its adjoint are solved in an alternating way. A convergence proof of this procedure is included and an efficient stopping criterion is employed. The numerical results confirm that the iterative method produces a convergent and stable numerical solution. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an arithmetic of function intervals as a basis for convenient rigorous numerical computation. Function intervals can be used as mathematical objects in their own right or as enclosures of functions over the reals. We present two areas of application of function interval arithmetic and associated software that implements the arithmetic: (1) Validated ordinary differential equation solving using the AERN library and within the Acumen hybrid system modeling tool. (2) Numerical theorem proving using the PolyPaver prover. © 2014 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new type of dissipative solitons - dissipative Raman solitons - are revealed on the basis of numerical study of the generalized complex nonlinear Ginzburg-Landau equation. The stimulated Raman scattering significantly affects the energy scalability of the dissipative solitons, causing splitting to multiple pulses. We show, that an appropriate increase of the group-delay dispersion can suppress the multipulsing instability due to formation of the dissipative Raman soliton, which is chirped, has a Stokes-shifted spectrum, and chaotic modulation on its trailing edge. The strong perturbation of a soliton envelope caused by the stimulated Raman scattering confines the energy scalability, preventing the so-called dissipative soliton resonance. We show that in practical implementations, a spectral filter can extend the stability regions of high-energy pulses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iterative method for the parabolic Cauchy problem in planar domains having a finite number of corners is implemented based on boundary integral equations. At each iteration, mixed well-posed problems are solved for the same parabolic operator. The presence of corner points renders singularities of the solutions to these mixed problems, and this is handled with the use of weight functions together with, in the numerical implementation, mesh grading near the corners. The mixed problems are reformulated in terms of boundary integrals obtained via discretization of the time-derivative to obtain an elliptic system of partial differential equations. To numerically solve these integral equations a Nyström method with super-algebraic convergence order is employed. Numerical results are presented showing the feasibility of the proposed approach. © 2014 IMACS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 26A33 (main), 44A40, 44A35, 33E30, 45J05, 45D05

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33 (main), 35A22, 78A25, 93A30

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 47A60, 30C15.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 26A33, 33C45

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 30B10, 33B15, 44A10, 47N70, 94C05

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a coexistence of coherent and incoherent modes in the optical comb generated by a passively mode-locked quantum dot laser. This is experimentally achieved by means of optical linewidth, radio frequency spectrum, and optical spectrum measurements and confirmed numerically by a delay-differential equation model showing excellent agreement with the experiment. We interpret the state as a chimera state. © 2014 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification 2010: 26A33, 33E12.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Conference on Partial Differential Equations and Applications, Sofia, September 14–16, 2011 (In honor of 65-th Anniversary of Professor Petar Popivanov) took place in the premises of the Institute of Mathematics and Informatics (IMI) of the Bulgarian Academy of Sciences (BAS). The conference was organized by the Section “Differential Equations and Mathematical Physics” of IMI with the participation of research groups on PDE from Universit`a di Cagliari and Universit`a di Torino (Italy), with the organizing committee – N. Kutev (IMI–BAS) – chair, G. Boyadzhiev (IMI–BAS) – secretary, T. Gramchev (Univ. Cagliari) and A. Oliaro (Univ. Torino) – members, and thefollowing program/scientific committee: T. Gramchev (chair), N. Kutev (IMI–BAS), L. Rodino (Universit`a di Torino), M. Ruzhansky (Imperial College London), A. Slavova (IMI–BAS), C. Van Der Mee (Universit`a di Cagliari).