963 resultados para nonhuman primate pathology
Resumo:
The α-synuclein-immunoreactive pathology of dementia associated with Parkinson disease (DPD) comprises Lewy bodies (LB), Lewy neurites (LN), and Lewy grains (LG). The densities of LB, LN, LG together with vacuoles, neurons, abnormally enlarged neurons (EN), and glial cell nuclei were measured in fifteen cases of DPD. Densities of LN and LG were up to 19 and 70 times those of LB, respectively, depending on region. Densities were significantly greater in amygdala, entorhinal cortex (EC), and sectors CA2/CA3 of the hippocampus, whereas middle frontal gyrus, sector CA1, and dentate gyrus were least affected. Low densities of vacuoles and EN were recorded in most regions. There were differences in the numerical density of neurons between regions, but no statistical difference between patients and controls. In the cortex, the density of LB and vacuoles was similar in upper and lower laminae, while the densities of LN and LG were greater in upper cortex. The densities of LB, LN, and LG were positively correlated. Principal components analysis suggested that DPD cases were heterogeneous with pathology primarily affecting either hippocampus or cortex. The data suggest in DPD: (1) ratio of LN and LG to LB varies between regions, (2) low densities of vacuoles and EN are present in most brain regions, (3) degeneration occurs across cortical laminae, upper laminae being particularly affected, (4) LB, LN and LG may represent degeneration of the same neurons, and (5) disease heterogeneity may result from variation in anatomical pathway affected by cell-to-cell transfer of α-synuclein. © 2013 Springer-Verlag Wien.
Resumo:
Although the existence of halogenated lipids in lower organisms has been known for many years, it is only since the 1990s that interest in their occurrence in mammalian systems has developed. Chlorinated (and other halogenated) lipids can arise from oxidation by hypohalous acids, such as HOCl, which are products of the phagocytic enzyme myeloperoxidase and are generated during inflammation. The major species of chlorinated lipids investigated to date are chlorinated sterols, fatty acid and phospholipid chlorohydrins, and a-chloro fatty aldehydes. While all of these chlorinated lipids have been shown to be produced in model systems from lipoproteins to cells subjected to oxidative stress, as yet only a-chloro fatty aldehydes, such as 2-chlorohexadecanal, have been detected in clinical samples or animal models of disease. a-Chloro fatty aldehydes and chlorohydrins have been found to have a number of potentially pro-inflammatory effects ranging from toxicity to inhibition of nitric oxide synthesis and upregulation of vascular adhesion molecules. Thus evidence is building for a role of chlorinated lipids in inflammatory disease, although much more research is required to establish the contributions of specific compounds in different disease pathologies. Preventing chlorinated lipid formation and indeed other HOCl-induced damage, via the inhibition of myeloperoxidase, is an area of growing interest and may lead in the future to antimyeloperoxidase-based antiinflammatory therapy. However, other chlorinated lipids, such as punaglandins, have beneficial effects that could offer novel therapies for cancer.
Resumo:
The evolution of cognitive neuroscience has been spurred by the development of increasingly sophisticated investigative techniques to study human cognition. In Methods in Mind, experts examine the wide variety of tools available to cognitive neuroscientists, paying particular attention to the ways in which different methods can be integrated to strengthen empirical findings and how innovative uses for established techniques can be developed. The book will be a uniquely valuable resource for the researcher seeking to expand his or her repertoire of investigative techniques. Each chapter explores a different approach. These include transcranial magnetic stimulation, cognitive neuropsychiatry, lesion studies in nonhuman primates, computational modeling, psychophysiology, single neurons and primate behavior, grid computing, eye movements, fMRI, electroencephalography, imaging genetics, magnetoencephalography, neuropharmacology, and neuroendocrinology. As mandated, authors focus on convergence and innovation in their fields; chapters highlight such cross-method innovations as the use of the fMRI signal to constrain magnetoencephalography, the use of electroencephalography (EEG) to guide rapid transcranial magnetic stimulation at a specific frequency, and the successful integration of neuroimaging and genetic analysis. Computational approaches depend on increased computing power, and one chapter describes the use of distributed or grid computing to analyze massive datasets in cyberspace. Each chapter author is a leading authority in the technique discussed.
Resumo:
The dentate gyrus (DG) is an important part of the hippocampal formation and is believed to be involved in a variety of brain functions including episodic and spatial memory and the exploration of novel environments. In several neurodegenerative disorders, significant pathology occurs in the DG which may be involved in the development of clinical dementia. Based on the abundance of pathological change, neurodegenerative disorders could be divided into three groups: (1) those in which high densities of neuronal cytoplasmic inclusions (NCI) were present in DG granule cells, e.g., Pick’s disease (PiD), frontotemporal lobar degeneration with TDP-43-immunoreactive inclusions (FTLD-TDP), and neuronal intermediate filament inclusion disease (NIFID), (2) those in which aggregated protein deposits were distributed throughout the hippocampal formation including the molecular layer of the DG, e.g., Alzheimer’s disease (AD), Down’s syndrome (DS), and variant Creutzfeldt-Jakob disease (vCJD), and (3) those in which in there was significantly less pathology in the DG, e.g., Parkinson’s disease dementia (PD-Dem), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), multiple system atrophy (MSA), and sporadic CJD (sCJD). Hence, DG pathology varied significantly among disorders which could contribute to differences in clinical dementia. Pathological differences among disorders could reflect either differential vulnerability of the DG to specific molecular pathologies or variation in the degree of spread of pathological proteins into the hippocampal formation from adjacent regions.
Resumo:
Significance: Oxidized phospholipids are now well-recognized as markers of biological oxidative stress and bioactive molecules with both pro-inflammatory and anti-inflammatory effects. While analytical methods continue to be developed for studies of generic lipid oxidation, mass spectrometry (MS) has underpinned the advances in knowledge of specific oxidized phospholipids by allowing their identification and characterization, and is responsible for the expansion of oxidative lipidomics. Recent Advances: Studies of oxidized phospholipids in biological samples, both from animal models and clinical samples, have been facilitated by the recent improvements in MS, especially targeted routines that depend on the fragmentation pattern of the parent molecular ion and improved resolution and mass accuracy. MS can be used to identify selectively individual compounds or groups of compounds with common features, which greatly improves the sensitivity and specificity of detection. Application of these methods have enabled important advances in understanding the mechanisms of inflammatory diseases such as atherosclerosis, steatohepatitis, leprosy and cystic fibrosis, and offer potential for developing biomarkers of molecular aspects of the diseases. Critical Issues and Future Directions: The future in this field will depend on development of improved MS technologies, such as ion mobility, novel enrichment methods and databases and software for data analysis, owing to the very large amount of data generated in these experiments. Imaging of oxidized phospholipids in tissue MS is an additional exciting direction emerging that can be expected to advance understanding of physiology and disease.
Resumo:
The dentate gyrus (DG) is an important part of the hippocampal formation and is believed to be involved in a variety of brain functions including episodic and spatial memory and the exploration of novel environments. In several neurodegenerative disorders, significant pathology occurs in the DG which may be involved in the development of clinical dementia. Based on the abundance of pathological change, neurodegenerative disorders can be divided into three groups: (1) those in which high densities of neuronal cytoplasmic inclusions (NCI) are present in DG granule cells, e.g., Pick’s disease (PiD), frontotemporal lobar degeneration with TDP-43-immunoreactive inclusions (FTLD-TDP), and neuronal intermediate filament inclusion disease (NIFID), (2) those in which aggregated protein deposits are distributed throughout the hippocampal formation including the molecular layer of the DG, e.g., Alzheimer’s disease (AD), Down’s syndrome (DS), and variant Creutzfeldt-Jakob disease (vCJD), and (3) those in which in there is significantly less pathology in the DG, e.g., Parkinson’s disease dementia (PD-Dem), dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), multiple system atrophy (MSA), and sporadic CJD (sCJD). Hence, DG pathology varies significantly among disorders which could contribute to differences in clinical dementia. Pathological differences among disorders could reflect either differential vulnerability of the DG to specific molecular pathologies or variation in the degree of spread of pathological proteins into the hippocampal formation from adjacent regions.
Resumo:
A proportion of patients with motor neuron disease (MND) exhibit frontotemporal dementia (FTD) and some patients with FTD develop the clinical features of MND. Frontotemporal lobar degeneration (FTLD) is the pathological substrate of FTD and some forms of this disease (referred to as FTLD-U) share with MND the common feature of ubiquitin-immunoreactive, tau-negative cellular inclusions in the cerebral cortex and hippocampus. Recently, the transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) has been found to be a major protein of the inclusions of FTLD-U with or without MND and these cases are referred to as FTLD with TDP-43 proteinopathy (FTLD-TDP). To clarify the relationship between MND and FTLD-TDP, TDP-43 pathology was studied in nine cases of FTLD-MND and compared with cases of familial and sporadic FTLD-TDP without associated MND. A principal components analysis (PCA) of the nine FTLD-MND cases suggested that variations in the density of surviving neurons in the frontal cortex and neuronal cytoplasmic inclusions (NCI) in the dentate gyrus (DG) were the major histological differences between cases. The density of surviving neurons in FTLD-MND was significantly less than in FTLD-TDP cases without MND, and there were greater densities of NCI but fewer neuronal intranuclear inclusions (NII) in some brain regions in FTLD-MND. A PCA of all FTLD-TDP cases, based on TDP-43 pathology alone, suggested that neuropathological heterogeneity was essentially continuously distributed. The FTLD-MND cases exhibited consistently high loadings on PC2 and overlapped with subtypes 2 and 3 of FTLD-TDP. The data suggest: (1) FTLD-MND cases have a consistent pathology, variations in the density of NCI in the DG being the major TDP-43-immunoreactive difference between cases, (2) there are considerable similarities in the neuropathology of FTLD-TDP with and without MND, but with greater neuronal loss in FTLD-MND, and (3) FTLD-MND cases are part of the FTLD-TDP 'continuum' overlapping with FTLD-TDP disease subtypes 2 and 3. © 2012 Nova Science Publishers, Inc. All rights reserved.
Resumo:
Oligodendrocytes have multiple functions in the central nervous system including mechanical support of neurons, production of myelin sheaths, and uptake and inactivation of chemical neurotransmitters released by neurons. Consequently, oligodendrocytes could be involved in the pathology of a number of neurodegenerative diseases. Although, the molecular mechanisms involved require further elucidation, it is likely that oligodendrocyte dysfunction is important in Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). In addition, abnormal protein aggregates in the form of oligodendrocyte inclusions (OI) have been observed in several other disorders, most notable in multiple system atrophy (MSA), in which the glial cytoplasmic inclusion (GCI) is the ‘signature’ pathology of the disease. OI have also been identified in argyrophilic grain disease (AGD), progressive supranuclear palsy (PSP) (Armstrong et al 2007), and various forms of frontotemporal lobar degeneration (FTLD) (Armstrong et al 2010), although their role in the pathology of these disorders is less clear. It is likely that future research will expand the range of disorders in which oligodendrocytes play a significant role in neurodegeneration.
Resumo:
AIMS: To quantify tau pathology of chronic traumatic encephalopathy (CTE) and investigate influence of dot-like lesions (DL), brain region, co-morbidity, and sporting career length. METHODS: Densities of neurofibrillary tangles (NFT), astrocytic tangles (AT), DL, oligodendroglial inclusions (GI), neuropil threads (NT), vacuoles, neurons, and enlarged neurons (EN) were measured in tau-immunoreactive sections of upper cortical laminae of frontal and temporal lobe, hippocampus (HC), amygdala, and substantia nigra (SN) of eleven cases of CTE. RESULTS: DL were a consistent finding in CTE. Densities of NFT, NT and DL were greatest in sectors CA1 and CA2 of the HC. Densities of AT were lower than NFT, small numbers of GI were recorded in temporal lobe, and low densities of vacuoles and EN were consistently present. β-amyloid containing neuritic plaques (NP) also occurred at low density. Densities of NFT, NT, DL, and AT were greater in sulci than gyri while vacuole density was greater in gyri. Principal components analysis (PCA) suggested that sporting career length and densities of NFT in entorhinal cortex, NT in CA2 and SN, and vacuolation in the DG were significant sources of variation among cases. CONCLUSION: DL are frequent in CTE suggesting affinity with argyrophilic grain disease (AGD) and Parkinson's disease dementia (PD-Dem). Densities of AT in all regions and NT/DL in sectors CA2/4 were consistent features of CTE. The eleven cases are neuropathologically heterogeneous which may result from genetic diversity, and variation in anatomical pathways subjected to trauma. This article is protected by copyright. All rights reserved.
Resumo:
PURPOSE: To investigate neuropathological changes in the superior colliculus in chronic traumatic encephalopathy. METHODS: The densities of the tau-immunoreactive neurofibrillary tangles, neuropil threads, dot-like grains, astrocytic tangles, and neuritic plaques, together with abnormally enlarged neurons, typical neurons, vacuolation, and frequency of contacts with blood vessels, were studied across the superior colliculus from pia mater to the periaqueductal gray in eight chronic traumatic encephalopathy and six control cases. RESULTS: Tau-immunoreactive pathology was absent in the superior colliculus of controls but present in varying degrees in all chronic traumatic encephalopathy cases, significant densities of tau-immunoreactive neurofibrillary tangles, NT, or dot-like grains being present in three cases. No significant differences in overall density of the tau-immunoreactive neurofibrillary tangles, neuropil threads, dot-like grains, enlarged neurons, vacuoles, or contacts with blood vessels were observed in control and chronic traumatic encephalopathy cases, but chronic traumatic encephalopathy cases had significantly lower mean densities of neurons. The distribution of surviving neurons across the superior colliculus suggested greater neuronal loss in intermediate and lower laminae in chronic traumatic encephalopathy. Changes in density of the tau-immunoreactive pathology across the laminae were variable, but in six chronic traumatic encephalopathy cases, densities of tau-immunoreactive neurofibrillary tangles, neuropil threads, or dot-like grains were significantly greater in intermediate and lower laminae. Pathological changes were not correlated with the distribution of blood vessels. CONCLUSIONS: The data suggest significant pathology affecting the superior colliculus in a proportion of chronic traumatic encephalopathy cases with a laminar distribution which could compromise motor function rather than sensory analysis.
Resumo:
Seasonal heterothermy—an orchestrated set of extreme physiological responses—is directly responsible for the over-winter survival of many mammalian groups living in seasonal environments. Historically, it was thought that the use of seasonal heterothermy (i.e. daily torpor and hibernation) was restricted to cold-adapted species; it is now known that such thermoregulatory strategies are used by more species than previously appreciated, including many tropical species. The dwarf and mouse lemurs (family Cheirogaleidae) are among the few primates known to use seasonal heterothermy to avoid Madagascar’s harsh and unpredictable environments. These primates provide an ideal study system for investigating a common mechanism of mammalian seasonal heterothermy. The overarching theme of this dissertation is to understand both the intrinsic and extrinsic drivers of heterothermy in three species of the family Cheirogaleidae. By using transcriptome sequencing to characterize gene expression in both captive and natural settings, we identify unique patterns of differential gene expression that are correlated with extreme changes in physiology in two species of dwarf lemurs: C. medius under captive conditions at the Duke Lemur Center and C. crossleyi studied under field conditions in Madagascar. Genes that are differentially expressed appear to be critical for maintaining the health of these animals when they undergo prolonged periods of metabolic depression concurrent with the hibernation phenotype. Further, a comparative analysis of previously studied mammalian heterotherms identifies shared genetic mechanisms underlying the hibernation phenotype across the phylogeny of mammals. Lastly, conducting a diet manipulation study with a captive colony of mouse lemurs (Microcebus murinus) at the Duke Lemur Center, we investigated the degree to which dietary effects influence torpor patterns. We find that tropical primate heterotherms may be exempt from the traditional paradigms governing cold-adapted heterothermy, having evolved different dietary strategies to tolerate circadian changes in body temperature.
Resumo:
Making decisions is fundamental to everything we do, yet it can be impaired in various disorders and conditions. While research into the neural basis of decision-making has flourished in recent years, many questions remain about how decisions are instantiated in the brain. Here we explored how primates make abstract decisions and decisions in social contexts, as well as one way to non-invasively modulate the brain circuits underlying decision-making. We used rhesus macaques as our model organism. First we probed numerical decision-making, a form of abstract decision-making. We demonstrated that monkeys are able to compare discrete ratios, choosing an array with a greater ratio of positive to negative stimuli, even when this array does not have a greater absolute number of positive stimuli. Monkeys’ performance in this task adhered to Weber’s law, indicating that monkeys—like humans—treat proportions as analog magnitudes. Next we showed that monkeys’ ordinal decisions are influenced by spatial associations; when trained to select the fourth stimulus from the bottom in a vertical array, they subsequently selected the fourth stimulus from the left—and not from the right—in a horizontal array. In other words, they begin enumerating from one side of space and not the other, mirroring the human tendency to associate numbers with space. These and other studies confirmed that monkeys’ numerical decision-making follows similar patterns to that of humans, making them a good model for investigations of the neurobiological basis of numerical decision-making.
We sought to develop a system for exploring the neuronal basis of the cognitive and behavioral effects observed following transcranial magnetic stimulation, a relatively new, non-invasive method of brain stimulation that may be used to treat clinical disorders. We completed a set of pilot studies applying offline low-frequency repetitive transcranial magnetic stimulation to the macaque posterior parietal cortex, which has been implicated in numerical processing, while subjects performed a numerical comparison and control color comparison task, and while electrophysiological activity was recorded from the stimulated region of cortex. We found tentative evidence in one paradigm that stimulation did selectively impair performance in the number task, causally implicating the posterior parietal cortex in numerical decisions. In another paradigm, however, we manipulated the subject’s reaching behavior but not her number or color comparison performance. We also found that stimulation produced variable changes in neuronal firing and local field potentials. Together these findings lay the groundwork for detailed investigations into how different parameters of transcranial magnetic stimulation can interact with cortical architecture to produce various cognitive and behavioral changes.
Finally, we explored how monkeys decide how to behave in competitive social interactions. In a zero-sum computer game in which two monkeys played as a shooter or a goalie during a hockey-like “penalty shot” scenario, we found that shooters developed complex movement trajectories so as to conceal their intentions from the goalies. Additionally, we found that neurons in the dorsolateral and dorsomedial prefrontal cortex played a role in generating this “deceptive” behavior. We conclude that these regions of prefrontal cortex form part of a circuit that guides decisions to make an individual less predictable to an opponent.
Resumo:
This study intends to validate the sensitivity and specificity of coded aperture coherent scatter spectral imaging (CACSSI) by comparison to clinical histological preparation and pathologic analysis methods currently used for the differentiation of normal and neoplastic breast tissues. A composite overlay of the CACSSI rendered image and pathologist interpreted, stained sections validate the ability of coherent scatter imaging to differentiate cancerous tissues from normal, healthy breast structures ex-vivo. Via comparison to the pathologist annotated slides, the CACSSI system may be further optimized to maximized sensitivity and specificity for differentiation of breast carcinomas.
Resumo:
Stroke is a prevalent disorder with immense socioeconomic impact. A variety of chronic neurological deficits result from stroke. In particular, sensorimotor deficits are a significant barrier to achieving post-stroke independence. Unfortunately, the majority of pre-clinical studies that show improved outcomes in animal stroke models have failed in clinical trials. Pre-clinical studies using non-human primate (NHP) stroke models prior to initiating human trials are a potential step to improving translation from animal studies to clinical trials. Robotic assessment tools represent a quantitative, reliable, and reproducible means to assess reaching behaviour following stroke in both humans and NHPs. We investigated the use of robotic technology to assess sensorimotor impairments in NHPs following middle cerebral artery occlusion (MCAO). Two cynomolgus macaques underwent transient MCAO for 90 minutes. Approximately 1.5 years following the procedure these NHPs and two non-stroke control monkeys were trained in a reaching task with both arms in the KINARM exoskeleton. This robot permits elbow and shoulder movements in the horizontal plane. The task required NHPs to make reaching movements from a centrally positioned start target to 1 of 8 peripheral targets uniformly distributed around the first target. We analyzed four movement parameters: reaction time, movement time (MT), initial direction error (IDE), and number of speed maxima to characterize sensorimotor deficiencies. We hypothesized reduced performance in these attributes during a neurobehavioural task with the paretic limb of NHPs following MCAO compared to controls. Reaching movements in the non-affected limbs of control and experimental NHPs showed bell-shaped velocity profiles. In contrast, the reaching movements with the affected limbs were highly variable. We found distinctive patterns in MT, IDE, and number of speed peaks between control and experimental monkeys and between limbs of NHPs with MCAO. NHPs with MCAO demonstrated more speed peaks, longer MTs, and greater IDE in their paretic limb compared to controls. These initial results qualitatively match human stroke subjects’ performance, suggesting that robotic neurobehavioural assessment in NHPs with stroke is feasible and could have translational relevance in subsequent human studies. Further studies will be necessary to replicate and expand on these preliminary findings.