878 resultados para non-linear programming


Relevância:

90.00% 90.00%

Publicador:

Resumo:

High frequency, miniature, pulse tube cryocoolers are extensively used in space applications because of their simplicity. Parametric studies of inertance type pulse tube cooler are performed with different length-to-diameter ratios of the pulse tube with the help of the FLUENT (R) package. The local thermal non-equilibrium of the gas and the matrix is taken into account for the modeling of porous zones, in addition to the wall thickness of the components. Dynamic characteristics and the actual mechanism of energy transfer in pulse are examined with the help of the pulse tube wall time constant. The heat interaction between pulse tube wall and the oscillating gas, leading to surface heat pumping, is quantified. The axial heat conduction is found to reduce the performance of the pulse tube refrigerator. The thermal non-equilibrium predicts a higher cold heat exchanger temperature compared to thermal equilibrium. The pressure drop through the porous medium has a strong non-linear effect due to the dominating influence of Forchheimer term over that of the linear Darcy term at high operating frequencies. The phase angle relationships among the pressure, temperature and the mass flow rate in the porous zones are also important in determining the performance of pulse tuberefrigerator.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The transient boundary layer flow and heat transfer of a viscous incompressible electrically conducting non-Newtonian power-law fluid in a stagnation region of a two-dimensional body in the presence of an applied magnetic field have been studied when the motion is induced impulsively from rest. The nonlinear partial differential equations governing the flow and heat transfer have been solved by the homotopy analysis method and by an implicit finite-difference scheme. For some cases, analytical or approximate solutions have also been obtained. The special interest are the effects of the power-law index, magnetic parameter and the generalized Prandtl number on the surface shear stress and heat transfer rate. In all cases, there is a smooth transition from the transient state to steady state. The shear stress and heat transfer rate at the surface are found to be significantly influenced by the power-law index N except for large time and they show opposite behaviour for steady and unsteady flows. The magnetic field strongly affects the surface shear stress, but its effect on the surface heat transfer rate is comparatively weak except for large time. On the other hand, the generalized Prandtl number exerts strong influence on the surface heat transfer. The skin friction coefficient and the Nusselt number decrease rapidly in a small interval 0 < t* < 1 and reach the steady-state values for t* >= 4. (C) 2010 Published by Elsevier Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Methodologies are presented for minimization of risk in a river water quality management problem. A risk minimization model is developed to minimize the risk of low water quality along a river in the face of conflict among various stake holders. The model consists of three parts: a water quality simulation model, a risk evaluation model with uncertainty analysis and an optimization model. Sensitivity analysis, First Order Reliability Analysis (FORA) and Monte-Carlo simulations are performed to evaluate the fuzzy risk of low water quality. Fuzzy multiobjective programming is used to formulate the multiobjective model. Probabilistic Global Search Laussane (PGSL), a global search algorithm developed recently, is used for solving the resulting non-linear optimization problem. The algorithm is based on the assumption that better sets of points are more likely to be found in the neighborhood of good sets of points, therefore intensifying the search in the regions that contain good solutions. Another model is developed for risk minimization, which deals with only the moments of the generated probability density functions of the water quality indicators. Suitable skewness values of water quality indicators, which lead to low fuzzy risk are identified. Results of the models are compared with the results of a deterministic fuzzy waste load allocation model (FWLAM), when methodologies are applied to the case study of Tunga-Bhadra river system in southern India, with a steady state BOD-DO model. The fractional removal levels resulting from the risk minimization model are slightly higher, but result in a significant reduction in risk of low water quality. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gauss and Fourier have together provided us with the essential techniques for symbolic computation with linear arithmetic constraints over the reals and the rationals. These variable elimination techniques for linear constraints have particular significance in the context of constraint logic programming languages that have been developed in recent years. Variable elimination in linear equations (Guassian Elimination) is a fundamental technique in computational linear algebra and is therefore quite familiar to most of us. Elimination in linear inequalities (Fourier Elimination), on the other hand, is intimately related to polyhedral theory and aspects of linear programming that are not quite as familiar. In addition, the high complexity of elimination in inequalities has forces the consideration of intricate specializations of Fourier's original method. The intent of this survey article is to acquaint the reader with these connections and developments. The latter part of the article dwells on the thesis that variable elimination in linear constraints over the reals extends quite naturally to constraints in certain discrete domains.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Due to increasing trend of intensive rice cultivation in a coastal river basin, crop planning and groundwater management are imperative for the sustainable agriculture. For effective management, two models have been developed viz. groundwater balance model and optimum cropping and groundwater management model to determine optimum cropping pattern and groundwater allocation from private and government tubewells according to different soil types (saline and non-saline), type of agriculture (rainfed and irrigated) and seasons (monsoon and winter). A groundwater balance model has been developed considering mass balance approach. The components of the groundwater balance considered are recharge from rainfall, irrigated rice and non-rice fields, base flow from rivers and seepage flow from surface drains. In the second phase, a linear programming optimization model is developed for optimal cropping and groundwater management for maximizing the economic returns. The models developed were applied to a portion of coastal river basin in Orissa State, India and optimal cropping pattern for various scenarios of river flow and groundwater availability was obtained.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We know, from the classical work of Tarski on real closed fields, that elimination is, in principle, a fundamental engine for mechanized deduction. But, in practice, the high complexity of elimination algorithms has limited their use in the realization of mechanical theorem proving. We advocate qualitative theorem proving, where elimination is attractive since most processes of reasoning take place through the elimination of middle terms, and because the computational complexity of the proof is not an issue. Indeed what we need is the existence of the proof and not its mechanization. In this paper, we treat the linear case and illustrate the power of this paradigm by giving extremely simple proofs of two central theorems in the complexity and geometry of linear programming.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fault-tolerance is due to the semiconductor technology development important, not only for safety-critical systems but also for general-purpose (non-safety critical) systems. However, instead of guaranteeing that deadlines always are met, it is for general-purpose systems important to minimize the average execution time (AET) while ensuring fault-tolerance. For a given job and a soft (transient) error probability, we define mathematical formulas for AET that includes bus communication overhead for both voting (active replication) and rollback-recovery with checkpointing (RRC). And, for a given multi-processor system-on-chip (MPSoC), we define integer linear programming (ILP) models that minimize AET including bus communication overhead when: (1) selecting the number of checkpoints when using RRC, (2) finding the number of processors and job-to-processor assignment when using voting, and (3) defining fault-tolerance scheme (voting or RRC) per job and defining its usage for each job. Experiments demonstrate significant savings in AET.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transfer function coefficients (TFC) are widely used to test linear analog circuits for parametric and catastrophic faults. This paper presents closed form expressions for an upper bound on the defect level (DL) and a lower bound on fault coverage (FC) achievable in TFC based test method. The computed bounds have been tested and validated on several benchmark circuits. Further, application of these bounds to scalable RC ladder networks reveal a number of interesting characteristics. The approach adopted here is general and can be extended to find bounds of DL and FC of other parametric test methods for linear and non-linear circuits.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper addresses the problem of maximum margin classification given the moments of class conditional densities and the false positive and false negative error rates. Using Chebyshev inequalities, the problem can be posed as a second order cone programming problem. The dual of the formulation leads to a geometric optimization problem, that of computing the distance between two ellipsoids, which is solved by an iterative algorithm. The formulation is extended to non-linear classifiers using kernel methods. The resultant classifiers are applied to the case of classification of unbalanced datasets with asymmetric costs for misclassification. Experimental results on benchmark datasets show the efficacy of the proposed method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper obtains a new accurate model for sensitivity in power systems and uses it in conjunction with linear programming for the solution of load-shedding problems with a minimum loss of loads. For cases where the error in the sensitivity model increases, other linear programming and quadratic programming models have been developed, assuming currents at load buses as variables and not load powers. A weighted error criterion has been used to take priority schedule into account; it can be either a linear or a quadratic function of the errors, and depending upon the function appropriate programming techniques are to be employed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Radius of Direct attraction of a discrete neural network is a measure of stability of the network. it is known that Hopfield networks designed using Hebb's Rule have a radius of direct attraction of Omega(n/p) where n is the size of the input patterns and p is the number of them. This lower bound is tight if p is no larger than 4. We construct a family of such networks with radius of direct attraction Omega(n/root plog p), for any p greater than or equal to 5. The techniques used to prove the result led us to the first polynomial-time algorithm for designing a neural network with maximum radius of direct attraction around arbitrary input patterns. The optimal synaptic matrix is computed using the ellipsoid method of linear programming in conjunction with an efficient separation oracle. Restrictions of symmetry and non-negative diagonal entries in the synaptic matrix can be accommodated within this scheme.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The stability of two long unsupported circular parallel tunnels aligned horizontally in fully cohesive and cohesive-frictional soils has been determined. An upper bound limit analysis in combination with finite elements and linear programming is employed to perform the analysis. For different clear spacing (S) between the tunnels, the stability of tunnels is expressed in terms of a non-dimensional stability number (gamma H-max/c); where H is tunnel cover, c refers to soil cohesion, and gamma(max) is maximum unit weight of soil mass which the tunnels can bear without any collapse. The variation of the stability number with tunnels' spacing has been established for different combinations of H/D, m and phi; where D refers to diameter of each tunnel, phi is the internal friction angle of soil and m accounts for the rate at which the cohesion increases linearly with depth. The stability number reduces continuously with a decrease in the spacing between the tunnels. The optimum spacing (S-opt) between the two tunnels required to eliminate the interference effect increases with (i) an increase in H/D and (ii) a decrease in the values of both m and phi. The value of S-opt lies approximately in a range of 1.5D-3.5D with H/D = 1 and 7D-12D with H/D = 7. The results from the analysis compare reasonably well with the different solutions reported in literature. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Advertising is ubiquitous in the online community and more so in the ever-growing and popular online video delivery websites (e. g., YouTube). Video advertising is becoming increasingly popular on these websites. In addition to the existing pre-roll/post-roll advertising and contextual advertising, this paper proposes an in-stream video advertising strategy-Computational Affective Video-in-Video Advertising (CAVVA). Humans being emotional creatures are driven by emotions as well as rational thought. We believe that emotions play a major role in influencing the buying behavior of users and hence propose a video advertising strategy which takes into account the emotional impact of the videos as well as advertisements. Given a video and a set of advertisements, we identify candidate advertisement insertion points (step 1) and also identify the suitable advertisements (step 2) according to theories from marketing and consumer psychology. We formulate this two part problem as a single optimization function in a non-linear 0-1 integer programming framework and provide a genetic algorithm based solution. We evaluate CAVVA using a subjective user-study and eye-tracking experiment. Through these experiments, we demonstrate that CAVVA achieves a good balance between the following seemingly conflicting goals of (a) minimizing the user disturbance because of advertisement insertion while (b) enhancing the user engagement with the advertising content. We compare our method with existing advertising strategies and show that CAVVA can enhance the user's experience and also help increase the monetization potential of the advertising content.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper guidance laws to intercept stationary and constant velocity targets at a desired impact angle, based on sliding mode control theory, are proposed. The desired impact angle, which is defined in terms of a desired line-of-sight (LOS) angle, is achieved in finite time by selecting the missile's lateral acceleration (latax) to enforce non-singular terminal sliding mode on a switching surface designed using this desired LOS angle and based on non-linear engagement dynamics. Numerical simulation results are presented to validate the proposed guidance laws for different initial engagement geometries and impact angles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.