883 resultados para muscle strength dynamometer
Resumo:
The aim of this thesis was to investigate the electrical and mechanical responses to inhibitory non-adrenergic noncholinergic (NANC) nerve stimulation in the bovine retractor penis muscle (BRP) and compare them with those to an inhibitory extract made from this muscle. The extract may contain the NANC inhibitory transmitter of the BRP and possibly of other smooth muscles. Because of species differences in the electrical response to NANC nerves in the rat and rabbit anococcygeus the effects of the extract on these tissues was also investigated. Prior to the investigation of the extract, both the excitatory and inhibitory responses to field stimulation in the BRP, and the effects of passive membrane potential displacement were studied using conventional intra- or extracellular (sucrose gap) recording techniques. The majority of cells in the BRP were electrically quiescent independent of the resting tone. The most frequent (in approximately 25% of preparations) form of spontaneous activity, oscillations in membrane potential and tone, may represent a pacemaker activity. The BRP had cable properties; the time constant and space constant indicated a high membrane resistance. In the absence of tone, field stimulation of the BRP evoked excitatory junction potentials (ejps) in every cell impaled and contractions, graded with the strength, frequency and number of pulses; spikes were not observed. Guanethidine (1-3 x 10-5M) abolished the ejps and contractions, confirming their adrenergic origin. Noradrenaline added exogenously depolarised and contracted the muscle. These effects were blocked by the a-adrenoceptor antagonists, phentolamine and prazosin. However, phentolamine (2.5x 10-6M) inhibited the contraction without reducing the ejp significantly. These effects may be independent of adrenoceptor blockade or the ejp may be mediated by a substance other than noradrenaline (e.g. ATP) released from adrenergic nerves. Prazosin (1.4 x lO-6M) failed to block either the ejp or contraction, indicating the possible existence of two types of adrenoceptor in the BRP; one activated by neuronally-released and the other by exogenously-added noradrenaline. ATP, a contaminant in the extract, also depolarised and contracted the BRP. Physostigmine reduced whilst atropine enhanced the ejps and contractions without similarly affecting the response to exogenous noradrenaline. This confirmed the presence of a cholinergic inhibitory innervation acting on the excitatory adrenergic fibres (Klinge and Sjostrand, 1977). TEA (1 x lO-4M) enhanced the ejp and contraction. Higher concentrations (0.5 to 10 x 10-3M) depolarised, increased the tone and evoked electrical and mechanical oscillations but no spikes. The depolarisation and contraction to exogenous noradrenaline were not enhanced, indicating that TEA acts on the adrenergic nerves. Some post-synaptic effect to block K+ channels also seems likely. The relationship between ejp amplitude and membrane potential in the double sucrose gap was linear and indicated a reversal potential more positive than -30mV. Electrotonic pulse amplitude decreased during the ejp, indicating an increased membrane conductance. Ejps and contractions were reduced following the replacement of the NaCl of the Krebs solution with sodium glutamate. This may be due to the effects of glutamate itself (e.g. Ca2+ chelation) rather than reduction in the membrane Cl- gradient. Tone usually developed spontaneously and was accompanied by membrane depolarisation (from -53 to -45mV) which may open voltage-dependent channels, causing Ca2+ entry and/or its release from intracellular binding sites. Field stimulation produced inhibitory potentials (ijps) and relaxations graded with the strength and number of pulses but showing little frequency dependence. Rebound depolarisation and contraction often followed the ijp and relaxation. Tetrodotoxin (3 x IO-6M), but not adrenergic or cholinergic antagonists, abolished the ijp and relaxation, confirming their non-adrenergic non-cholinergic neurogenic nature. The extract, prepared and acid-activated as described by Gillespie, Hunter and Martin (1981), hyperpolarised and relaxed the BRP, as did sodium nitroprusside and adenosine triphosphate (ATP). Unlike the activated extract or sodium nitroprusside, desensitisation to ATP occurred rapidly and without any change in the inhibitory electrical or mechanical responses to field stimulation. The ijp and relaxation in the BRP were insensitive to apamin but abolished by oxyhaemoglobin (4-8 x 10-6M), as were the responses to extract and sodium nitroprusside. In TEA (10-2M), field stimulation evoked relaxations with no accompanying electrical change. The ijp may be unconnected with or additional to another mechanism producing relaxation. The relationship between membrane potential and ijp in the BRP was non-linear. Ijp amplitude was initially increased during membrane potential displacement from -45mV to approximately -60mV. Thereafter (-60 to -l03mV) the ijp was reduced. Ijps were abolished at -27 and -103mV; reversal was not observed. The hyperpolarisation to extract was also enhanced during passive displacement of the membrane potential to more negative values (-57mV). Membrane resistance increased during the ijp. The extract produced inconsistent changes in membrane resistance, possibly because of the presence of more than one active component. K+ withdrawal failed to enhance the ijp or hyperpolarisation to extract and 20mM K+ did not abolish the the ijp at membrane potentials exceeding EK (-49mV). Thus, the ijp or hyperpolarisation to extract are unlikely to be mediated by an increased K+ conductance. Reducing the Cl- abolished the hyperpolarisation to field stimulation and extract. This occurred more quickly than the anticipated reduction in the Cl- gradient and may be due to Ca2+ chelation by the anion substitute (glutamate or benzenesulphonate) or blockade of the resting conductance which is normally inactivated by the transmitter. Ouabain (1-5x 10-5M), which reduces both the Na+ and Cl- gradients, abolished the ijp, implicating either of these ions as the ionic species involved. In the rat and rabbit anococcygeus, field stimulation and extract each reduced guanethidine-induced tone. This was unaccompanied in the majority of cells in the rat by any significant electrical response. In the remaining cells, inhibition of the membrane potential oscillations occurred. The rabbit anococcygeus differed in that inhibition of the electrical oscillations was observed in every cell exhibiting this behaviour. However, the majority of cells in the rabbit were electrically quiescent and showed only small hyperpolarisations to field stimulation and no electrical response to extract. Apamin (1 x 10-7M) failed to block the electrical and mechanical response to field stimulation in the rabbit but did inhibit transiently that to extract. The latter effect may be due to the initial excitatory effects of apamin. The similarities between the electrical effects of the extract and those of inhibitory nerve stimulation in the BRP, rat and rabbit anococcygeus muscles are generally consistent with their being mediated by the same active component. Moreover, the ijp in the BRP shows properties which have not been reported in other non-adrenergic noncholinergically innervated smooth muscles.
Resumo:
This study determined roller massager (RM) effectiveness on ankle plantar flexors’ recovery after exercise-induced muscle damage (EIMD) stimulus. Two experiments were conducted. The first experiment (n=10) examined functional [i.e., ankle plantar flexion maximal voluntary isometric contraction (MVIC) and submaximal (30% of MVIC) sustained force; ankle dorsiflexion maximal range of motion and resistance to stretch; and pain pressure threshold] and morphological [medial gastrocnemius (MG) cross sectional area, thickness, fascicle length, and fascicle angle] variables, before and immediately, 1h, 24h, 48h, and 72 after EIMD. In the second experiment (n=10), changes in MG deoxyhemoglobin concentration kinetics (velocity and amplitude) during a submaximal sustained force test were observed before and 48h after EIMD. Participants performed both experiments twice, with and without (NRM) the application of a RM (6 × 45 seconds with 20 seconds rest between sets). RM intervention did not alter plantar flexors’ strength and flexibility impairment after EIMD, as well the MG morphology and oxygenation kinetics (p>0.05). On the other hand, a strong tendency for an acute (within 1 hour) change of ipsilateral (post-effects: RM=+19%, NRM=-5%, p=0.032) and contralateral (p=0.095) MG pain pressure threshold was observed. In conclusion, the present results suggest that a roller massager has no effect on muscular performance, morphology, and oxygenation recovery after EIMD, except for muscle pain pressure threshold (i.e., a soreness). Thus, RM may have potential application in recovery for people with increased muscle soreness, if performed immediately before a physical task.
Resumo:
Projeto de Graduação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Licenciado em Fisioterapia
Resumo:
Sexual dysfunction (SD) affects up to 80% of multiple sclerosis (MS) patients and pelvic floor muscles (PFMs) play an important role in the sexual function of these patients. The objective of this paper is to evaluate the impact of a rehabilitation program to treat lower urinary tract symptoms on SD of women with MS. Thirty MS women were randomly allocated to one of three groups: pelvic floor muscle training (PFMT) with electromyographic (EMG) biofeedback and sham neuromuscular electrostimulation (NMES) (Group I), PFMT with EMG biofeedback and intravaginal NMES (Group II), and PFMT with EMG biofeedback and transcutaneous tibial nerve stimulation (TTNS) (Group III). Assessments, before and after the treatment, included: PFM function, PFM tone, flexibility of the vaginal opening and ability to relax the PFMs, and the Female Sexual Function Index (FSFI) questionnaire. After treatment, all groups showed improvements in all domains of the PERFECT scheme. PFM tone and flexibility of the vaginal opening was lower after the intervention only for Group II. All groups improved in arousal, lubrication, satisfaction and total score domains of the FSFI questionnaire. This study indicates that PFMT alone or in combination with intravaginal NMES or TTNS contributes to the improvement of SD.
Resumo:
This study investigated the effect of simulated microwave disinfection (SMD) on the linear dimensional changes, hardness and impact strength of acrylic resins under different polymerization cycles. Metal dies with referential points were embedded in flasks with dental stone. Samples of Classico and Vipi acrylic resins were made following the manufacturers' recommendations. The assessed polymerization cycles were: A-- water bath at 74ºC for 9 h; B-- water bath at 74ºC for 8 h and temperature increased to 100ºC for 1 h; C-- water bath at 74ºC for 2 h and temperature increased to 100ºC for 1 h;; and D-- water bath at 120ºC and pressure of 60 pounds. Linear dimensional distances in length and width were measured after SMD and water storage at 37ºC for 7 and 30 days using an optical microscope. SMD was carried out with the samples immersed in 150 mL of water in an oven (650 W for 3 min). A load of 25 gf for 10 sec was used in the hardness test. Charpy impact test was performed with 40 kpcm. Data were submitted to ANOVA and Tukey's test (5%). The Classico resin was dimensionally steady in length in the A and D cycles for all periods, while the Vipi resin was steady in the A, B and C cycles for all periods. The Classico resin was dimensionally steady in width in the C and D cycles for all periods, and the Vipi resin was steady in all cycles and periods. The hardness values for Classico resin were steady in all cycles and periods, while the Vipi resin was steady only in the C cycle for all periods. Impact strength values for Classico resin were steady in the A, C and D cycles for all periods, while Vipi resin was steady in all cycles and periods. SMD promoted different effects on the linear dimensional changes, hardness and impact strength of acrylic resins submitted to different polymerization cycles when after SMD and water storage were considered.
Resumo:
Congenital muscular dystrophy with laminin α2 chain deficiency (MDC1A) is one of the most severe forms of muscular disease and is characterized by severe muscle weakness and delayed motor milestones. The genetic basis of MDC1A is well known, yet the secondary mechanisms ultimately leading to muscle degeneration and subsequent connective tissue infiltration are not fully understood. In order to obtain new insights into the molecular mechanisms underlying MDC1A, we performed a comparative proteomic analysis of affected muscles (diaphragm and gastrocnemius) from laminin α2 chain-deficient dy(3K)/dy(3K) mice, using multidimensional protein identification technology combined with tandem mass tags. Out of the approximately 700 identified proteins, 113 and 101 proteins, respectively, were differentially expressed in the diseased gastrocnemius and diaphragm muscles compared with normal muscles. A large portion of these proteins are involved in different metabolic processes, bind calcium, or are expressed in the extracellular matrix. Our findings suggest that metabolic alterations and calcium dysregulation could be novel mechanisms that underlie MDC1A and might be targets that should be explored for therapy. Also, detailed knowledge of the composition of fibrotic tissue, rich in extracellular matrix proteins, in laminin α2 chain-deficient muscle might help in the design of future anti-fibrotic treatments. All MS data have been deposited in the ProteomeXchange with identifier PXD000978 (http://proteomecentral.proteomexchange.org/dataset/PXD000978).
Resumo:
This study investigated the effect of simulated microwave disinfection (SMD) on the linear dimensional changes, hardness and impact strength of acrylic resins under different polymerization cycles. Metal dies with referential points were embedded in flasks with dental stone. Samples of Classico and Vipi acrylic resins were made following the manufacturers' recommendations. The assessed polymerization cycles were: A) water bath at 74 ºC for 9 h; B) water bath at 74 ºC for 8 h and temperature increased to 100 ºC for 1 h; C) water bath at 74 ºC for 2 h and temperature increased to 100 ºC for 1 h; and D) water bath at 120 ºC and pressure of 60 pounds. Linear dimensional distances in length and width were measured after SMD and water storage at 37 ºC for 7 and 30 days using an optical microscope. SMD was carried out with the samples immersed in 150 mL of water in an oven (650 W for 3 min). A load of 25 gf for 10 s was used in the hardness test. Charpy impact test was performed with 40 kpcm. Data were submitted to ANOVA and Tukey's test (5%). The Classico resin was dimensionally steady in length in the A and D cycles for all periods, while the Vipi resin was steady in the A, B and C cycles for all periods. The Classico resin was dimensionally steady in width in the C and D cycles for all periods, and the Vipi resin was steady in all cycles and periods. The hardness values for Classico resin were steady in all cycles and periods, while the Vipi resin was steady only in the C cycle for all periods. Impact strength values for Classico resin were steady in the A, C and D cycles for all periods, while Vipi resin was steady in all cycles and periods. SMD promoted different effects on the linear dimensional changes, hardness and impact strength of acrylic resins submitted to different polymerization cycles when after SMD and water storage were considered.
Resumo:
The article seeks to investigate patterns of performance and relationships between grip strength, gait speed and self-rated health, and investigate the relationships between them, considering the variables of gender, age and family income. This was conducted in a probabilistic sample of community-dwelling elderly aged 65 and over, members of a population study on frailty. A total of 689 elderly people without cognitive deficit suggestive of dementia underwent tests of gait speed and grip strength. Comparisons between groups were based on low, medium and high speed and strength. Self-related health was assessed using a 5-point scale. The males and the younger elderly individuals scored significantly higher on grip strength and gait speed than the female and oldest did; the richest scored higher than the poorest on grip strength and gait speed; females and men aged over 80 had weaker grip strength and lower gait speed; slow gait speed and low income arose as risk factors for a worse health evaluation. Lower muscular strength affects the self-rated assessment of health because it results in a reduction in functional capacity, especially in the presence of poverty and a lack of compensatory factors.
Resumo:
The aim of this study was to evaluate the microtensile bond strength (µTBS) of two substrates (enamel and dentin) considering two study factors: type of composite resin [methacrylate-based (Filtek Supreme) or silorane-based (Filtek LS)] and aging time (24 h or 3 months). Twenty human molars were selected and divided into 2 groups (n=10) considering two dental substrates, enamel or dentin. The enamel and dentin of each tooth was divided into two halves separated by a glass plate. Each tooth was restored using both tested composite resins following the manufacturer's instructions. The samples were sectioned, producing 4 sticks for each composite resin. Half of them were tested after 24 h and half after 3 months. µTBS testing was carried out at 0.05 mm/s. Data were analyzed by three-way ANOVA and Tukey's HSD tests at α=0.05. Significant differences between composite resins and substrates were found (p<0.05), but no statistically significant difference was found for aging time and interactions among study factors. The methacrylate-based resin showed higher µTBS than the silorane-based resin. The µTBS for enamel was significantly higher than for dentin, irrespective of the composite resin and storage time. Three months of storage was not sufficient time to cause degradation of the bonding interaction of either of the composite resins to enamel and dentin.
Resumo:
This study investigated the effect of the incorporation of an iodonium salt in experimental composites, on the bond strength of metallic brackets bonded to bovine teeth. Two hundred and seventy bovine teeth were embedded in self-curing acrylic resin and divided into 18 groups (n=15), according to the experimental composite with an iodonium salt at molar concentrations 0 (control), 0.5, or 1%; the light-activation times (8, 20 and 40 s); and the storage times (10 min or 24 h). Metallic brackets were fixed on the tooth surface using experimental composites. Photoactivation was performed with a quartz-tungsten-halogen light-curing unit curing unit for 8, 20 and 40 s. The specimens were stored in distilled water at 37 °C for 10 min or 24 h and submitted to bond strength test at 0.5 mm/min. The data were subjected to three-way ANOVA and Tukey's test (α=0.05). The Adhesive Remnant Index (ARI) was used to classify the failure modes. The shear bond strengths (MPa) at 10 min for light-activation times of 8, 20 and 40 s were: G1 - 4.6, 6.9 and 7.1; G2 - 8.1, 9.2 and 9.9; G3 - 9.1, 10.4 and 10.7; and at 24 h were: G1 - 10.9, 11.1 and 11.7; G2 - 11.8, 12.7 and 14.2; G3 - 12.1, 14.4 and 15.8. There was a predominance of ARI score 3 for groups with 10 min storage time, and ARI score 2 for groups with 24 h storage time. In conclusion, the addition of iodonium salt (C05 and C1) to the experimental composite may increase the bond strength of brackets to bovine enamel using reduced light exposure times.
Resumo:
G-CSF has been shown to decrease inflammatory processes and to act positively on the process of peripheral nerve regeneration during the course of muscular dystrophy. The aims of this study were to investigate the effects of treatment of G-CSF during sciatic nerve regeneration and histological analysis in the soleus muscle in MDX mice. Six-week-old male MDX mice underwent left sciatic nerve crush and were G-CSF treated at 7 days prior to and 21 days after crush. Ten and twenty-one days after surgery, the mice were euthanized, and the sciatic nerves were processed for immunohistochemistry (anti-p75(NTR) and anti-neurofilament) and transmission electron microscopy. The soleus muscles were dissected out and processed for H&E staining and subsequent morphologic analysis. Motor function analyses were performed at 7 days prior to and 21 days after sciatic crush using the CatWalk system and the sciatic nerve index. Both groups treated with G-CSF showed increased p75(NTR) and neurofilament expression after sciatic crush. G-CSF treatment decreased the number of degenerated and regenerated muscle fibers, thereby increasing the number of normal muscle fibers. The reduction in p75(NTR) and neurofilament indicates a decreased regenerative capacity in MDX mice following a lesion to a peripheral nerve. The reduction in motor function in the crushed group compared with the control groups may reflect the cycles of muscle degeneration/regeneration that occur postnatally. Thus, G-CSF treatment increases motor function in MDX mice. Nevertheless, the decrease in baseline motor function in these mice is not reversed completely by G-CSF.
Resumo:
The effectiveness of low-level laser therapy in muscle regeneration is still not well known. To investigate the effects of laser irradiation during muscle healing. For this purpose, 63 rats were distributed to 3 groups: non-irradiated control group (CG); group irradiated at 10 J/cm(2) (G10); and group irradiated at 50 J/cm(2) (G50). Each group was divided into 3 different subgroups (n=7), and on days 7, 14 and 21 post-injury the rats were sacrificed. Seven days post-surgery, the CG showed destroyed zones and extensive myofibrillar degeneration. For both treated groups, the necrosis area was smaller compared to the CG. On day 14 post-injury, treated groups demonstrated better tissue organization, with newly formed muscle fibers compared to the CG. On the 21(st) day, the irradiated groups showed similar patterns of tissue repair, with improved muscle structure at the site of the injury, resembling uninjured muscle tissue organization. Regarding collagen deposition, the G10 showed an increase in collagen synthesis. In the last period evaluated, both treated groups showed statistically higher values in comparison with the CG. Furthermore, laser irradiation at 10 J/cm(2) produced a down-regulation of cyclooxygenase 2 (Cox-2) immunoexpression on day 7 post-injury. Moreover, Cox-2 immunoexpression was decreased in both treated groups on day 14. Laser therapy at both fluencies stimulated muscle repair through the formation of new muscle fiber, increase in collagen synthesis, and down-regulation of Cox-2 expression.
Resumo:
To evaluate the microtensile bond strength (µTBS) of a fluoride-containing adhesive system submitted to a pH-cycling and storage time regimen for primary outcomes. As secondary outcomes the fluoride released amount was evaluated. Twelve dentin surfaces from sound third molar were divided into 2 groups according to adhesive systems: Clearfil SE Protect (PB) and Clearfil SE Bond (SE). Sticks obtained (1.0 mm2) from teeth were randomly divided into 3 subgroups according to storage regimen model: immediate (24h); 5-month deionized water (W); and pH-cycling model (C). All sticks were tested for µTBS in a universal testing machine. Fluoride concentration was obtained from 1-4 days and 30-day in W and 1-4 days in demineralization (DE)/remineralization (RE) solutions from C, using a fluoride-specific electrode. µTBS and fluoride released data were, respectively, submitted to ANOVA in a split plot design and Tukey, and Friedman' tests (a=0.05). There was no significant interaction between adhesive system and storage regimen for µTBS. W showed the lowest µTBS values. There was no significant difference between 24 h and C models for µTBS. There was no significant difference between adhesive systems. Failure mode was predominantly cohesive within composite for the 24 h and W, for the C group it was mixed for SE and cohesive within composite for PB adhesive system. Fluoride concentrations in the DE/RE solutions were less than 0.03125 ppm and not detected in W. In conclusion, the fluoride-containing adhesive system performed similarly to the regular one. Hydrolytic degradation is the main problem with both adhesive systems, regardless of fluoride contents.
Resumo:
To investigate the effects of a specific protocol of undulatory physical resistance training on maximal strength gains in elderly type 2 diabetics. The study included 48 subjects, aged between 60 and 85 years, of both genders. They were divided into two groups: Untrained Diabetic Elderly (n=19) with those who were not subjected to physical training and Trained Diabetic Elderly (n=29), with those who were subjected to undulatory physical resistance training. The participants were evaluated with several types of resistance training's equipment before and after training protocol, by test of one maximal repetition. The subjects were trained on undulatory resistance three times per week for a period of 16 weeks. The overload used in undulatory resistance training was equivalent to 50% of one maximal repetition and 70% of one maximal repetition, alternating weekly. Statistical analysis revealed significant differences (p<0.05) between pre-test and post-test over a period of 16 weeks. The average gains in strength were 43.20% (knee extension), 65.00% (knee flexion), 27.80% (supine sitting machine), 31.00% (rowing sitting), 43.90% (biceps pulley), and 21.10% (triceps pulley). Undulatory resistance training used with weekly different overloads was effective to provide significant gains in maximum strength in elderly type 2 diabetic individuals.