958 resultados para molecular regulation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nedd4 and Nedd4-2 are ubiquitin-protein ligases known to regulate a number of membrane proteins including receptors and ion transporters. Regulation of the epithelial Na+ channel by Nedd4 and Nedd4-2 is mediated via interactions between the PY motifs of the epithelial sodium channel subunits and the Nedd4/Nedd4-2 WW domains. This example serves as a model for the regulation of other PY motif-containing ion channels by Nedd4 and Nedd4-2. We found that the carboxyl termini of the six voltage-gated Na+ (Na-v) channels contain typical PY motifs (PPXY), and a further Na-v contains a PY motif variant (LPXY). Not only did we demonstrate by Far-Western analysis that Nedd4 and Nedd4-2 interact with the PY motif-containing Na-v channels, but we also showed that these channels have conserved WW domain binding specificity. We further showed that the carboxyl termini fusion proteins of one central nervous system and one peripheral nervous system-derived Na+ channel (Na(v)1.2 and Na(v)1.7, respectively) are readily ubiquitinated by Nedd4-2. In Xenopus oocytes, Nedd4-2 strongly inhibited the activities of all three Na(v)s (Na(v)1.2, Na(v)1.7, and Na(v)1.8) tested. Interestingly, Nedd4 suppressed the activity of Na(v)1.2 and Na(v)1.7 but was a poor inhibitor of Na(v)1.8. Our results provide evidence that Nedd4 and Nedd4-2 are likely to be key regulators of specific neuronal Na-v channels in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intestinal absorption of the essential trace element iron and its mobilization from storage sites in the body are controlled by systemic signals that reflect tissue iron requirements. Recent advances have indicated that the liver-derived peptide hepcidin plays a central role in this process by repressing iron release from intestinal enterocytes, macrophages and other body cells. When iron requirements are increased, hepcidin levels decline and more iron enters the plasma. It has been proposed that the level of circulating diferric transferrin, which reflects tissue iron levels, acts as a signal to alter hepcidin expression. In the liver, the proteins HFE, transferrin receptor 2 and hemojuvelin may be involved in mediating this signal as disruption of each of these molecules decreases hepcidin expression. Patients carrying mutations in these molecules or in hepcidin itself develop systemic iron loading (or hemochromatosis) due to their inability to down regulate iron absorption. Hepcidin is also responsible for the decreased plasma iron or hypoferremia that accompanies inflammation and various chronic diseases as its expression is stimulated by pro-inflammatory cytokines such as interleukin 6. The mechanisms underlying the regulation of hepcidin expression and how it acts on cells to control iron release are key areas of ongoing research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sulfate (SO42-) is an important anion regulating many metabolic and cellular processes. Maintenance Of SO42- homeostasis occurs in the renal proximal tubule via membrane transport proteins. Two SO42- transporters that have been characterized and implicated in regulating serum SO42- levels are: NaSi- 1, a Na+-SO4 (2-) cotransporter located at the brush border membrane and Sat-1, a SO4 (2-) -anion exchanger located on the basolateral membranes of proximal tubular cells. Unlike Sat-1, for which very few studies have looked at regulation of its expression, NaSi- 1 has been shown to be regulated by various hormones and dietary conditions in vivo. To study this further, NaSj- I (SLC13A1) and Sat- I (SLC26A1) gene structures were determined and recent studies have characterized their respective gene promoters. This review presents the current understanding of the transcriptional regulation of NaSj- I and Sat- 1, and describes possible pathogenetic implications which arise as a consequence of altered SO(4)(2-)homeostasis. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During mammalian sexual development, the SOX9 transcription factor up-regulates expression of the gene encoding anti-Mullerian hormone (AMH), but in chickens, Sox9 gene expression reportedly occurs after the onset of Amh expression. Here, we examined expression of the related gene Sox8 in chicken embryonic gonads during the sex-determining period. We found that cSox8 is expressed at similar levels in both sexes at embryonic day 6 and 7, and only at the anterior tip of the gonad, suggesting that SOX8 is not responsible for the sex-specific increase in cAmh gene expression at these stages. We also found that several other chicken Sox genes (cSox3, cSox4 and cSox11) are expressed in embryonic gonads, but at similar levels in both sexes. Our data suggest that the molecular mechanisms involved in the regulation of Amh genes of mouse and chicken are not conserved, despite similar patterns of Amh expression in both species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the cloning and characterization in tobacco and Arabidopsis of a Vigna radiata L. (mung bean) promoter that controls the expression of VR-ACS1, an auxin-inducible ACC synthase gene. The VR-ACS1 promoter exhibits a very unusual behavior when studied in plants different from its original host, mung bean. GUS and luciferase in situ assays of transgenic plants containing VR-ACS1 promoter fusions show strong constitutive reporter gene expression throughout tobacco and Arabidopsis development. In vitro quantitative analyses show that transgenic plants harboring VR-ACS1 promoter-reporter constructs have on average 4-6 fold higher protein and activity levels of both reporter genes than plants transformed with comparable CaMV 35S promoter fusions. Similar transcript levels are present in VR-ACS1 and CaMV 35S promoter lines, suggesting that the high levels of gene product observed for the VR-ACS1 promoter are the combined result of transcriptional and translational activation. All tested deletion constructs retaining the core promoter region can drive strong constitutive promoter activity in transgenic plants. This is in contrast to mung bean, where expression of the native VR-ACS1 gene is almost undetectable in plants grown under normal conditions, but is rapidly and highly induced by a variety of stimuli. The constitutive behavior of the VR-ACS1 promoter in heterologous hosts is surprising, suggesting that the control mechanisms active in mung bean are impaired in tobacco and Arabidopsis. The 'aberrant' behavior of the VR-ACS1 promoter is further emphasized by its failure to respond to auxin and cycloheximide in heterologous hosts. VR-ACS1 promoter regulatory mechanisms seem to be different from all previously characterized auxin-inducible promoters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The constitutive reuptake of albumin from the glomerular filtrate by receptor-mediated endocytosis is a key function of the renal proximal tubules. Both the Cl- channel ClC-5 and the Na+-H+ exchanger isoform 3 are critical components of the macromolecular endocytic complex that is required for albumin uptake, and therefore the cell-surface levels of these proteins may limit albumin endocytosis. This study was undertaken to investigate the potential roles of the epithelial PDZ scaffolds, Na+-H+ exchange regulatory factors, NHERF1 and NHERF2, in albumin uptake by opossum kidney ( OK) cells. We found that ClC-5 co-immunoprecipitates with NHERF2 but not NHERF1 from OK cell lysate. Experiments using fusion proteins demonstrated that this was a direct interaction between an internal binding site in the C terminus of ClC-5 and the PDZ2 module of NHERF2. In OK cells, NHERF2 is restricted to the intravillar region while NHERF1 is located in the microvilli. Silencing NHERF2 reduced both cell-surface levels of ClC-5 and albumin uptake. Conversely, silencing NHERF1 increased cell-surface levels of ClC-5 and albumin uptake, presumably by increasing the mobility of NHE3 in the membrane and its availability to the albumin uptake complex. Surface biotinylation experiments revealed that both NHERF1 and NHERF2 were associated with the plasma membrane and that NHERF2 was recruited to the membrane in the presence of albumin. The importance of the interaction between NHERF2 and the cytoskeleton was demonstrated by a significant reduction in albumin uptake in cells overexpressing an ezrin binding-deficient mutant of NHERF2. Thus NHERF1 and NHERF2 differentially regulate albumin uptake by mechanisms that ultimately alter the cell-surface levels of ClC-5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discrete stochastic simulations are a powerful tool for understanding the dynamics of chemical kinetics when there are small-to-moderate numbers of certain molecular species. In this paper we introduce delays into the stochastic simulation algorithm, thus mimicking delays associated with transcription and translation. We then show that this process may well explain more faithfully than continuous deterministic models the observed sustained oscillations in expression levels of hes1 mRNA and Hes1 protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exocytosis of neurotransmitter containing vesicles supports neuronal communication. The importance of molecular interactions involving specific lipids has become progressively more evident and the lipid composition of both the synaptic vesicle and the pre-synaptic plasma membrane at the active zone has significant functional consequences for neurotransmitter release. Several classes of lipids have been implicated in exocytosis including polyunsaturated fatty acids and phosphoinositides. This minireview will focus on recent developments regarding the role of phosphoinositides in neurosecretion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well established that prostaglandins are essential mediators of bone resorption and formation. In the early 1990s, it was discovered that enzymatic reactions producing prostaglandins were regulated by two cyclooxygenase enzymes, one producing prostaglandins constitutively in tissues like the stomach, prostaglandin endoperoxide H synthase-1 (PGHS-1 or COX-1), and another induced by mitogens or inflammatory mediators (PGHS-2 or COX-2). This neat distinction has not been maintained because both enzymes act in different cell systems to provide physiological signaling, constitutively or by induction under certain conditions. For example, the regulation patterns of PGHS-1 and PGHS-2 are distinct, but the evidence shows that PGHS-2 functions constitutively in the skeleton. PGHS-2 hits quickly been established, therefore, as a key regulator of bone biology, capable of rapid and transient expression in bone cells, and mediating osteoclastogenesis, mechanotransduction, bone formation and fracture repair. The goal of this review is to Summarize the current state of our knowledge of PGHS regulation of bone metabolism and to identify some of the key unresolved challenges and questions that require further study. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adiponectin is a secreted, multimeric protein with insulin-sensitizing, antiatherogenic, and antiinflammatory properties. Serum adiponectin consists of trimer, hexamer, and larger high-molecular-weight (HMW) multimers, and these HMW multimers appear to be the more bioactive forms. Multimer composition of adiponectin appears to be regulated; however, the molecular mechanisms involved are unknown. We hypothesize that regulation of adiponectin multimerization and secretion occurs via changes in posttranslational modifications (PTMs). Although a structural role for intertrimer disulfide bonds in the formation of hexamers and HMW multimers is established, the role of other PTMs is unknown. PTMs identified in murine and bovine adiponectin include hydroxylation of multiple conserved proline and lysine residues and glycosylation of hydroxylysines. By mass spectrometry, we confirmed the presence of these PTMs in human adiponectin and identified three additional hydroxylations on Pro71, Pro76, and Pro95. We also investigated the role of the five modified lysines in multimer formation and secretion of recombinant human adiponectin expressed in mammalian cell lines. Mutation of modified lysines in the collagenous domain prevented formation of HMW multimers, whereas a pharmacological inhibitor of prolyl- and lysyl-hydroxylases, 2,2'-dipyridyl, inhibited formation of hexamers and HMW multimers. Bacterially expressed human adiponectin displayed a complete lack of differentially modified isoforms and failed to form bona fide trimers and larger multimers. Finally, glucose-induced increases in HMW multimer production from human adipose explants correlated with changes in the two-dimensional electrophoresis profile of adiponectin isoforms. Collectively, these data suggest that adiponectin multimer composition is affected by changes in PTM in response to physiological factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To facilitate the study of the regulation and downstream interactions of genes involved in gonad development it is important to have a suitable cell culture model. We therefore aimed to characterize molecularly three different mouse gonad cell lines. TM3 and TM4 cells were originally isolated from prepubertal mouse gonads and were tentatively identified as being of Leydig cell and Sertoli cell origin, respectively, based upon their morphology and hormonal responses. The third line is a conditionally immortalized cell line, derived from 10.5-11.5 days post-coitum (dpc) male gonads of transgenic embryos carrying a temperature-sensitive SV40 large T-antigen. We studied by reverse transcription-polymerase chain reaction (RT-PCR) the expression profiles of a number of genes known to be important for early gonad development. Moreover, we assessed these cell lines for their capacity to induce Sox9 transcription upon expression of Sry, a key molecular event occurring during sex determination. We found that all three cell lines were unable to upregulate Sox9 expression upon transfection of Sry-expression constructs, even though these cells express many of the studied embryonic gonad genes. These observations point to a requirement for SRY cofactors for direct or indirect upregulation of Sox9 expression during testis determination. Copyright © 2003 S. Karger AG, Basel