922 resultados para mineral particle size
Resumo:
Methane, the main constituent of natural gas (> 85%), is employed in large scale as an energy source (thermoelectric power plants, automobiles, etc). However, significant quantities of this gas contribute to the greenhouse effect. The catalytic combustion of methane can minimize these emissions. Palladium is one of the metals that shows the highest activity, depending on the different active forms of the metal. In this article, we focus on the influence of particle size and pretreatment on the catalytic performance of palladium in the methane combustion reaction.
Resumo:
This work describes a systematic study for bovine liver sample preparation for Cd and Pb determination by solid sampling electrothermal atomic absorption spectrometry. Samples were prepared using different procedures: (1) drying in a household microwave oven followed by drying in a stove at 60 ºC until constant mass, and (2) freeze-drying. Ball and cryogenic mills were used for grinding. Particle size, sample size and micro sample homogeneity were investigated. All prepared samples showed good homogeneity (He < 10) even for low sample mass, but samples dried in a microwave oven/stove and ground in a ball mill presented the best homogeneity.
Resumo:
Diplomityön tavoitteena oli tutkia höyrykattiloiden leijukerrosten käytettävyysongelmia ja kirjallisuudesta löytyvien diagnostiikkamenetelmien toimivuutta leijukerroksen tilan ja käytettävyysongelmien tunnistamiseksi. Diagnostiikkamenetelmien toimivuutta testattiin VTT:n kiertoleijukoelaitteen prosessimittauksiin perustuen. Analysoinnissa käytettiin prosessimittauksia, jotka ovat yleisesti käytössä energiantuotannon leijukerroskattiloissa. Analysoitavina koeajotapauksina olivat kylmäkokeet partikkelikokojakaumaltaan vaihtelevalle leijutusmateriaalille, tuhkapartikkelien aiheuttama petimateriaalin karkeneminen ja agglomeroituminen, sekä vaihtelevien ajoarvojen vaikutus leijukerroksen hydrodynaamiseen käyttäytymiseen. Kokeellisesta osiosta saaduista tuloksista selvisi leijutusilman tilavuusvirran, petimassan ja partikkelikoon vaikutus analysoitavaan prosessimittaukseen. Tuloksista oli havaittavissa myös kiertävän petimateriaalin ja pohjapedin osuuksien vaikutus mitattuun painesignaaliin. Petipartikkelien agglomeroitumisen ja karkenemisen todettiin lisäävän kiertoleijukoelaitteistossa nousuputken pohjapedin määrää suhteessa kiertävään petimateriaaliin, mikä voitiin havaita painemittauksista.
Resumo:
The effect of operational variables and their interaction in TPR profiles was studied using a fractional factorial experimental design. The heating rate and the reducing agent concentration were found to be the most important variables determining the resolution and sensitivity of the technique. They showed opposite effects. Therefore, they should be manipulated preferentially in order to obtain optimized TPR profiles. The effect of sample particle size was also investigated. The tests were carried out within a Cu/Zn/Al2O3 catalyst used for the water-gas shift reaction that presented two distinct species of Cu2+ in TPR profiles.
Resumo:
A comparison between silica by acid leaching of rice husk (RH) and silica obtained from thermal treatment of rice husk ash (RHA) is presented. The best leaching results were obtained using 10% hydrochloric acid followed by washing with water. The alternative method, calcination of RHA at 700 ºC for 6 h followed by grinding for 80 min, was more effective. Silica obtained from RH was about 97% amorphous, had a 17.37 µm mean particle size, and a specific surface area of 296 m²/g. On the other hand, for silica obtained from RHA the values were about 95% amorphous material 0.68 µm, and 81 m²/g.
Resumo:
Thermogravimetry was applied to investigate the effects of temperature and atmosphere on conversion of sulfur dioxide (SO2) absorbed by limestone. Ranges of temperature and particle size were studied, typical of fluidized-bed coal combustion. Isothermal experiments were performed at different temperatures (between 750 and 950 ºC) under local atmospheric pressure (~ 697 mmHg) in dynamic atmospheres of air and nitrogen. The maximum conversion was 29% higher in nitrogen atmosphere than in air atmosphere. The optimum conversion temperature was found at 831 ºC in air atmosphere and at 894 ºC in nitrogen atmosphere.
Resumo:
In this work, aqueous suspensions of aluminas with different particle sizes were evaluated. The effect of pH on the electrosteric stabilization using PMAA-NH4 (ammonium polymethacrylate) as deflocculant was studied. The amount of deflocculant was optimized and rheologic properties were determined at four different pH values. Sedimentation was also evaluated. For suspensions with pH 4, an electrostatic mechanism of stabilization was observed, probably due to a flat adsorption of PMMA- on the alumina surface, leading to a small efficiency in relation to steric stabilization. For a suspension with pH 12, the steric mechanism of stabilization prevails. Suspensions with pH 7 and 9 present a higher flocculation degree. In relation to particle size, A-1000 samples present a smaller particle size, leading to a smaller interparticle distance (IPS), making stabilization more difficult.
Resumo:
Titanium is an attractive material for structural and biomedical applications because of its excellent corrosion resistance, biocompatibility and high strength-to-weight ratio. The high reactivity of titanium in the liquid phase makes it difficult to produce it by fusion. Powder metallurgy has been shown to be an adequate technique to obtain titanium samples at low temperatures and solid-phase consolidation. The production of compacts with different porosities obtained by uniaxial pressing and vacuum sintering is briefly reviewed. Powder particle size control has been shown to be very important for porosity control. Sample characterization was made using scanning electron microscopy (SEM) images.
Resumo:
Green coconut shells were treated with acid, base and hydrogen peroxide solutions for 3, 6, 12 and 24 h for removing toxic metals from synthetic wastewater. The removal of ions by the adsorbent treated with 0.1 mol L-1 NaOH/ 3h was 99.5% for Pb2+ and 97.9% for Cu2+. The removal of Cd2+, Ni2+, Zn2+, using adsorbent treated with 1.0 mol L-1 NaOH/3 h, was 98.5, 90.3 and 95.4%, respectively. Particle size, adsorbent concentration and adsorption kinetics were also studied. An adsorbent size of 60-99 mesh and a concentration of 30-40 g/L for 5 min exposure were satisfactory for maximum uptake of Pb2+, Ni2+, Cd2+, Zn2+ and Cu2+ and can be considered as promising parameters for treatment the aqueous effluents contaminated with toxic metals.
Resumo:
Sulfur emission in coal power generation is a matter of great environmental concern and limestone sorbents are widely used for reducing such emissions. Thermogravimetry was applied to determine the effects of the type of limestone (calcite and dolomite), particle size (530 and 650 µm) and atmosphere (air and nitrogen) on the kinetics of SO2 sorption by limestone. Isothermal experiments were performed for different temperatures (650 to 950 ºC), at local atmospheric pressure. The apparent activation energies, as indicated by the slope of the Arrhenius plot, resulted between 3.03 and 4.45 kJ mol-1 for the calcite, and 11.24 kJ mol-1 for the dolomite.
Resumo:
This work describes novel materials based on pure iron oxide and iron oxide/niobia composite to produce a magnetic adsorbent. These materials were prepared with synthetic iron oxide and characterized by powder XRD, SEM, FTIR, TPR and Mössbauer spectroscopy. Results showed that the main iron oxides formed were goethite (aFeOOH) and maghemite (gFe2O3) with small particle size. The iron oxide and iron oxide/niobia composite showed high adsorption ability for organic compounds. The positive enthalpy indicated an endothermic adsorption process suggesting physical adsorption.
Resumo:
An analytical method has been developed and validated for the quantitation of lamivudine, zidovudine and nevirapine in the fixed-dose combination film-coated tablet by high performance liquid chromatography, in accordance with RE No. 899/2003, National Sanitary Surveillance Agency. It was based on an isocratic elution system with a potassium phosphate buffer pH 3.0: acetonitrile (60:40 v/v) mobile phase, C18, 250 x 46 mm column, 10µm particle size, λ 270 nm. The statistically evaluated results have shown that the method is specific, precise, accurate, and robust, ensuring the analytical safety of 3TC, AZT and NVP determination, which emerges as a new therapeutic alternative for antiretroviral treatment.
Resumo:
The synthesis of the ceramic pigment Victoria Green (Ca3Cr2Si3O12 ) is described. As raw materials CaCO3, Cr2O3, and SiO2 obtained from rice husk were used. Borax was used as mineralizer. Raw materials were formulated stoichiometrically and calcined from 1000 to 1200 ºC for 180 min. The main phase detected was uvarovite with particle size below 45 mm. The pigments were applied on ceramic tiles and sintered at 1150 ºC for 40 min. The synthesis process showed to be adequate to produce the green pigment, whose characteristics resemble those of a commercial pigment.
Resumo:
Cooling crystallization is one of the most important purification and separation techniques in the chemical and pharmaceutical industry. The product of the cooling crystallization process is always a suspension that contains both the mother liquor and the product crystals, and therefore the first process step following crystallization is usually solid-liquid separation. The properties of the produced crystals, such as their size and shape, can be affected by modifying the conditions during the crystallization process. The filtration characteristics of solid/liquid suspensions, on the other hand, are strongly influenced by the particle properties, as well as the properties of the liquid phase. It is thus obvious that the effect of the changes made to the crystallization parameters can also be seen in the course of the filtration process. Although the relationship between crystallization and filtration is widely recognized, the number of publications where these unit operations have been considered in the same context seems to be surprisingly small. This thesis explores the influence of different crystallization parameters in an unseeded batch cooling crystallization process on the external appearance of the product crystals and on the pressure filtration characteristics of the obtained product suspensions. Crystallization experiments are performed by crystallizing sulphathiazole (C9H9N3O2S2), which is a wellknown antibiotic agent, from different mixtures of water and n-propanol in an unseeded batch crystallizer. The different crystallization parameters that are studied are the composition of the solvent, the cooling rate during the crystallization experiments carried out by using a constant cooling rate throughout the whole batch, the cooling profile, as well as the mixing intensity during the batch. The obtained crystals are characterized by using an automated image analyzer and the crystals are separated from the solvent through constant pressure batch filtration experiments. Separation characteristics of the suspensions are described by means of average specific cake resistance and average filter cake porosity, and the compressibilities of the cakes are also determined. The results show that fairly large differences can be observed between the size and shape of the crystals, and it is also shown experimentally that the changes in the crystal size and shape have a direct impact on the pressure filtration characteristics of the crystal suspensions. The experimental results are utilized to create a procedure that can be used for estimating the filtration characteristics of solid-liquid suspensions according to the particle size and shape data obtained by image analysis. Multilinear partial least squares regression (N-PLS) models are created between the filtration parameters and the particle size and shape data, and the results presented in this thesis show that relatively obvious correlations can be detected with the obtained models.
Resumo:
The aim of this work is to evaluate the use of natural zeolites to remove the NH4+ that remains in effluents from swine facilities which were submitted to physico-chemical and biological treatments. Experiments were made in batch made adding 5% (w/w) of adsorbent (0.6-1.3 and 3.0-8.0 mm) to synthetic and real swine facilities effluents. The results show that ammonium removal is influenced by adsorbent particle size and the presence of other ions in the effluent. The adsorption equilibrium was described by Langmuir as well as Freundlich isotherms and the kinetic data fitted well a pseudo-second order model.