998 resultados para microbial conversion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In July 2004, dominant populations of microbial ultraplankton (<5 μm), in the surface of the Celtic Sea (between UK and Eire), were repeatedly mapped using flow cytometry, at 1.5 km resolution over a region of diameter 100 km. The numerically dominant representatives of all basic functional types were enumerated including one group of phototrophic bacteria (Syn), two groups of phytoplankton (PP, NP), three groups of heterotrophic bacterioplankton (HB) and the regionally dominant group of heterotrophic protists (HP). The distributions of all organisms showed strong spatial variability with little relation to variability in physical fields such as salinity and temperature. Furthermore, there was little agreement between distributions of different organisms. The only linear correlation consistently explaining more than 50% of the variance between any pairing of the organism groups enumerated is between two different groups of HB. Specifically, no linear, or non-linear, relationship is found between any pairings of SYB, PP or HB groups with their protist predators HP. Looking for multiple dependencies, factor analysis reveals three groupings: Syn, PP and low nucleic acid content HB (LNA); high nucleic acid content HB (HNA); HP and NP. Even the manner in which the spatial variability of Syn, PP and HB abundance varies as a function of lengthscale (represented by a semivariogram) differs significantly from that for HP. In summary, although all microbial planktonic groups enumerated are present and numerically dominant throughout the region studied, at face value the relationships between them seem weak. Nevertheless, the behaviour of a simple, illustrative ecological model, with strongly interacting phototrophs and heterotrophs, with stochastic forcing, is shown to be consistent with the observed poor correlations and differences in how spatial variability varies with lengthscale. Thus, our study suggests that a comparison of microbial abundances alone may not discern strong underlying trophic interactions. Specific knowledge of these processes, in particular grazing, will be required to explain the causes of the observed microbial spatial variability and its resulting consequences for the functioning of the ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acetone is an important oxygenated volatile organic compound (OVOC) in the troposphere where it influences the oxidizing capacity of the atmosphere. However, the air-sea flux is not well quantified, in part due to a lack of knowledge regarding which processes control oceanic concentrations, and, specifically whether microbial oxidation to CO2 represents a significant loss process. We demonstrate that 14C labeled acetone can be used to determine microbial oxidation to 14CO2. Linear microbial rates of acetone oxidation to CO2 were observed for between 0.75-3.5 h at a seasonally eutrophic coastal station located in the western English Channel (L4). A kinetic experiment in summer at station L4 gave a Vmax of 4.1 pmol L-1 h-1, with a Km constant of 54 pM. We then used this technique to obtain microbial acetone loss rates ranging between 1.2 and 42 pmol L-1 h-1.(monthly averages) over an annual cycle at L4, with maximum rates observed during winter months. The biological turnover time of acetone (in situ concentration divided by microbial oxidation rate) in surface waters varied from ~3 days in February 2011, when in situ concentrations were 3 ± 1 nM, to >240 days in June 2011, when concentrations were more than twofold higher at 7.5 ± 0.7 nM. These relatively low marine microbial acetone oxidation rates, when normalized to in situ concentrations, suggest that marine microbes preferentially utilize other OVOCs such as methanol and acetaldehyde.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whether a small cell, a small genome or a minimal set of chemical reactions with self-replicating properties, simplicity is beguiling. As Leonardo da Vinci reportedly said, 'simplicity is the ultimate sophistication'. Two diverging views of simplicity have emerged in accounts of symbiotic and commensal bacteria and cosmopolitan free-living bacteria with small genomes. The small genomes of obligate insect endosymbionts have been attributed to genetic drift caused by small effective population sizes (Ne). In contrast, streamlining theory attributes small cells and genomes to selection for efficient use of nutrients in populations where Ne is large and nutrients limit growth. Regardless of the cause of genome reduction, lost coding potential eventually dictates loss of function. Consequences of reductive evolution in streamlined organisms include atypical patterns of prototrophy and the absence of common regulatory systems, which have been linked to difficulty in culturing these cells. Recent evidence from metagenomics suggests that streamlining is commonplace, may broadly explain the phenomenon of the uncultured microbial majority, and might also explain the highly interdependent (connected) behavior of many microbial ecosystems. Streamlining theory is belied by the observation that many successful bacteria are large cells with complex genomes. To fully appreciate streamlining, we must look to the life histories and adaptive strategies of cells, which impose minimum requirements for complexity that vary with niche.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polar Oceans are natural CO2 sinks because of the enhanced solubility of CO2 in cold water. The Arctic Ocean is at additional risk of accelerated ocean acidification (OA) because of freshwater inputs from sea ice and rivers, which influence the carbonate system. Winter conditions in the Arctic are of interest because of both cold temperatures and limited CO2 venting to the atmosphere when sea ice is present. Earlier OA experiments on Arctic microbial communities conducted in the absence of ice cover, hinted at shifts in taxa dominance and diversity under lowered pH. The Catlin Arctic Survey provided an opportunity to conduct in situ, under-ice, OA experiments during late Arctic winter. Seawater was collected from under the sea ice off Ellef Ringnes Island, and communities were exposed to three CO2 levels for 6 days. Phylogenetic diversity was greater in the attached fraction compared to the free-living fraction in situ, in the controls and in the treatments. The dominant taxa in all cases were Gammaproteobacteria but acidification had little effect compared to the effects of containment. Phylogenetic net relatedness indices suggested that acidification may have decreased the diversity within some bacterial orders, but overall there was no clear trend. Within the experimental communities, alkalinity best explained the variance among samples and replicates, suggesting subtle changes in the carbonate system need to be considered in such experiments. We conclude that under ice communities have the capacity to respond either by selection or phenotypic plasticity to heightened CO2 levels over the short term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that the bioturbating polychaete Hediste (Nereis) diversicolor can affect the composition of bacterial communities in oil-contaminated sediments, but have not considered diversity specifically within bioturbator burrows or the impact on microbial eukaryotes. We tested the hypothesis that H. diversicolor burrows harbour different eukaryotic and bacterial communities compared with un-bioturbated sediment, and that bioturbation stimulates oil degradation. Oil-contaminated sediment was incubated with or without H. diversicolor for 30 days, after which sediment un-affected by H. diversicolor and burrow DNA/RNA samples were analysed using quantitative reverse transcription PCR (Q-RT-PCR) and high-throughput sequencing. Fungi dominated both burrow and un-bioturbated sediment sequence libraries; however, there was significant enrichment of bacterivorous protists and nematodes in the burrows. There were also significant differences between the bacterial communities in burrows compared with un-bioturbated sediment. Increased activity and relative abundance of aerobic hydrocarbon-degrading bacteria in the burrows coincided with the significant reduction in hydrocarbon concentration in the bioturbated sediment. This study represents the first detailed assessment of the effect of bioturbation on total microbial communities in oil-contaminated sediments. In addition, it further shows that bioturbation is a significant factor in determining microbial diversity within polluted sediments and plays an important role in stimulating bioremediation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of the benthic microbial community to a controlled sub-seabed CO2 leak was assessed using quantitative PCR measurements of benthic bacterial, archaeal and cyanobacteria/chloroplast 16S rRNA genes. Samples were taken from four zones (epicentre; 25 m distant, 75 m distant and 450 m distant) during 6 time points (7 days before CO2 exposure, after 14 and 36 days of CO2 release, and 6, 20 and 90 days after the CO2 release had ended). Changes to the active community of microphytobenthos and bacteria were also assessed before, during and after CO2 release. Increases in the abundance of microbial 16S rRNA were detected after 14 days of CO2 release and at a distance of 25 m from the epicentre. CO2 related changes to the relative abundance of both major and minor bacterial taxa were detected: most notably an increase in the relative abundance of the Planctomycetacia after 14 days of CO2 release. Also evident was a decrease in the abundance of microbial 16S rRNA genes at the leak epicentre during the initial recovery phase: this coincided with the highest measurements of DIC within the sediment, but may be related to the release of potentially toxic metals at this time point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In all but the most sterile environments bacteria will reside in fluid being transported through conduits and some of these will attach and grow as biofilms on the conduit walls. The concentration and diversity of bacteria in the fluid at the point of delivery will be a mix of those when it entered the conduit and those that have become entrained into the flow due to seeding from biofilms. Examples include fluids through conduits such as drinking water pipe networks, endotracheal tubes, catheters and ventilation systems. Here we present two probabilistic models to describe changes in the composition of bulk fluid microbial communities as they are transported through a conduit whilst exposed to biofilm communities. The first (discrete) model simulates absolute numbers of individual cells, whereas the other (continuous) model simulates the relative abundance of taxa in the bulk fluid. The discrete model is founded on a birth-death process whereby the community changes one individual at a time and the numbers of cells in the system can vary. The continuous model is a stochastic differential equation derived from the discrete model and can also accommodate changes in the carrying capacity of the bulk fluid. These models provide a novel Lagrangian framework to investigate and predict the dynamics of migrating microbial communities. In this paper we compare the two models, discuss their merits, possible applications and present simulation results in the context of drinking water distribution systems. Our results provide novel insight into the effects of stochastic dynamics on the composition of non-stationary microbial communities that are exposed to biofilms and provides a new avenue for modelling microbial dynamics in systems where fluids are being transported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Application of a high resolution high performance liquid chromatography-mass spectrometry method to the study of a microbial mat system has permitted the identification of a greater number of pigments derived from green bacteria than reported in a previous study. Although the green bacteria found in the mat were identified as Chloroflexus-like, bacteriochlorophylls and bacteriophaeophytins c that can be attributed to Chloroflexaceae on the basis of literature reports account for less than 10% of the pigments derived from green bacteria in the mat. Analysis of the bacteriochlorophylls and bacteriophaeophytins c and d using atmospheric pressure chemical ionisation-liquid chromatography-tandem mass spectrometry reveals complex depth profiles, signalling inputs from a number of organisms. The pigment compositions provide evidence for green bacteria living in close proximity to the living cyanobacterial mat. Depth profiles of pigments derived from green, purple and cyanobacteria indicate that the remnants of mats present in the deeper part of the section contain a record dominated by signatures from anoxygenic photoautotrophs.

Relevância:

20.00% 20.00%

Publicador: