936 resultados para melanopsin-containing intrinsically photosensitive retinal ganglion cells
Resumo:
The asymmetric reduction of 2-chloro-1-phenylethanone (1) by seven strains of marine fungi was evaluated and afforded (S)-(-)-2-chloro-1-phenylethanol with, in the best case, an enantiomeric excess of 50% and an isolated yield of 60%. The ability of marine fungi to catalyse the reduction was directly dependent on growth in artificial sea water-based medium containing a high concentration of Cl(-) (1.2 M). When fungi were grown in the absence of artificial sea water, no reduction of 1 by whole cells was observed. The biocatalytic reduction of 1 was more efficient at neutral rather than acidic pH values and in the absence of glucose as co-substrate.
Resumo:
The human protein Ki-1/57 was first identified through the cross reactivity of the anti-CD30 monoclonal antibody Ki-1; in Hodgkin lymphoma cells. The expression of Ki-1/57 in diverse cancer cells and its phosphorylation in peripheral blood leukocytes after mitogenic activation suggested its possible role in cell signaling. Ki-1/57 interacts with several other regulatory proteins involved in cellular signaling, transcriptional regulation and RNA metabolism, suggesting it may have pleiotropic functions. In a previous spectroscopic analysis, we observed a low content of secondary structure for Ki-1/57 constructs. Here, Circular dichroism experiments, in vitro RNA binding analysis, and limited proteolysis assays of recombinant Ki-1/57(122-413) and proteolysis assays of endogenous full length protein from human HEK293 cells suggested that Ki-1/57 has characteristics of an intrinsically unstructured protein. Small-angle X-ray scattering (SAXS) experiments were performed with the C-terminal fragment Ki-1/57(122-413). These results indicated an elongated shape and a partially unstructured conformation of the molecule in solution, confirming the characteristics of an intrinsically unstructured protein. Experimental curves together with ab initio modeling approaches revealed an extended and flexible molecule in solution. An elongated shape was also observed by analytical gel filtration. Furthermore, sedimentation velocity analysis suggested that Ki-1/57 is a highly asymmetric protein. These findings may explain the functional plasticity of Ki-1/57, as suggested by the wide array of proteins with which it is capable of interacting in yeast two-hybrid interaction assays.
Resumo:
In young cells of leaf meristems the progenitors of chloroplasts are small organelles known as proplastids, which divide and differentiate into chloroplasts. However, in the absence of light, proplastids undergo a different sequence of development and become etioplasts. When light is supplied to etiolated plants during the "greening" process, etioplasts differentiate into chloroplasts containing chlorophyll. An important light dependent step in chlorophyll biosynthesis is the photoreduction of protochlorophyllide to chlorophyllide by the NADPH:protochlorophyllide reductase (PCR) enzyme. This enzyme is present at high activity only in etiolated tissue and during early stages of light-induced chlorophyll synthesis. The enzyme and its corresponding mRNAs decrease dramatically with prolonged exposure to light. We have investigated the light-dependent transcriptional regulation of a PCR gene in greening maize leaf cells using a transient expression assay based on microprojectile bombardment. The promoter region was isolated and cloned into a ?-glucuronidase (GUS) reporter gene expression plasmid. We have used this chimeric plasmid in tungsten particle bombardment of both etiolated and greening maize seedling leaves to determine whether the cloned promoter region contains regulatory sequences that control light-responsive PCR gene expression.
Resumo:
The present in vitro experiments were designed to evaluate the ability of bovine cumulus-oocyte-complexes (COCs)to produce steroids and also to evaluate the modulatory effects of added estradiol, progesterone and testosterone on the steroidogenic activity of COCs. Considerable estradiol accumulation was observed in the control maturation medium for in vitro maturation of bovine COCs during the 24h of maturation (P < 0.05). When testosterone was added to the medium at various concentrations, a slight estradiol accumulation occurred, which, however, was lower (P < 0.05) than that observed in the control medium. Slight estradiol accumulation was observed in maturation medium containing progesterone at concentrations of 2.5, 5.0 and 10.0 mug/ml, but these increases were less (P < 0.05) than those observed in the control medium. However, in the presence of 1.0 mug/ml progesterone, estradiol accumulation was equal to that of the control medium (P > 0.05). Progesterone accumulation (P < 0.05) was observed in the control medium for in vitro maturation of bovine COCs. When estradiol was added to the maturation medium, progesterone accumulation was observed, but was significant (P < 0.05) only when the medium was supplemented with the lesser concentrations of estradiol utilized in the experiment (1.0 mug/ml). The results demonstrated that (1) cumulus cells of bovine COCs are able to secrete estradiol and progesterone in culture systems for in vitro maturation, and this steroidogenesis is modulated by the steroids progesterone, testosterone and estradiol, and (2) the addition of estradiol to the in vitro maturation medium of bovine oocytes should be reviewed, since cumulus cells of COCs have been demonstrated to secrete estradiol in the maturation medium. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The macro- and microstructures of the rabbit celiac-mesenteric ganglion complex are described in 20 young animals. We found ten celiac ganglia, twenty-seven cranial mesenteric ganglia and eleven celiac-mesenteric ganglia. The celiac ganglia had a rectangular shape in nine cases (90%) and a circular one in one case (10%). The cranial mesenteric ganglia presented triangular (66.7%), rectangular (11.1%), L-shape (18.5%) and semilunar (3.7%) arrangements. The celiac-mesenteric ganglia were organized in three patterns: a single left celiac-mesenteric ganglion having a caudal portion (72.7%); celiac-mesenteric ganglia without a caudal portion (18.2%) and a single celiac-mesenteric ganglion with two portions: left and right (9.1%).The microstructure was investigated in nine celiac-mesenteric ganglia. The results showed that the celiac-mesenteric ganglion is actually a ganglion complex constituted of an agglomerate of ganglionic units separated by nerve fibers, capillaries and septa of connective tissue. Using the semi-thin section method we described the cellular organization of the celiac-mesenteric ganglion complex. Inside of each ganglionic unit, there were various cell types: principal ganglion neurons (PGN), glial cells (satellite cells) and SIF cells (small intensely fluorescent cells or small granular cells), which are the cytologic basis for each ganglionic unit of the rabbit's celiac-mesenteric ganglion complex.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Most of our knowledge concerning the virulence determinants of pathogenic fungi comes from the infected host, mainly from animal models and more recently from in vitro studies with cell cultures. The fungi usually present intra- and/or extracellular host-parasite interfaces, with the parasitism phenomenon dependent on complementary surface molecules. Among living organisms, this has been characterized as a cohabitation event, where the fungus is able to recognize specific host tissues acting as an attractant, creating stable conditions for its survival. Several fungi pathogenic for humans and animals have evolved special strategies to deliver elements to their cellular targets that may be relevant to their pathogenicity. Most of these pathogens express surface factors that mediate binding to host cells either directly or indirectly, in the latter case binding to host adhesion components such as extracellular matrix (ECM) proteins, which act as 'interlinking' molecules. The entry of the pathogen into the host cell is initiated by fungal adherence to the cell surface, which generates an uptake signal that may induce its cytoplasmic internalization. Once this is accomplished, some fungi are able to alter the host cytoskeletal architecture, as manifested by a rearrangement of microtubule and microfilament proteins, and this can also induce epithelial host cells to become apoptotic. It is possible that fungal pathogens induce modulation of different host cell pathways in order to evade host defences and to foster their own proliferation. For a number of pathogens, the ability to bind ECM glycoproteins, the capability of internalization and the induction of apoptosis are considered important factors in virulence. Furthermore, specific recognition between fungal parasites and their host cell targets may be mediated by the interaction of carbohydrate-binding proteins, e.g., lectins on the surface of one type of cell, probably a parasite, that combine with complementary sugars on the surface of host-cell. These interactions supply precise models to study putative adhesins and receptor-containing molecules in the context of the fungus-host interface. The recognition of the host molecules by fungi such as Aspergillus fumigatus, Paracoccidioides brasiliensis and Histoplasma capsulatum, and their molecular mechanisms of adhesion and invasion, are reviewed in this paper.
Resumo:
Subcutaneous heat-coagulated egg white implants (EWI) induce chronic, intense local eosinophilia in mice, followed by asthma-like responses to airway ovalbumin challenge. Our goal was to define the mechanisms of selective eosinophil accumulation in the EWI model. EWI carriers were challenged i.p. with ovalbumin and the contributions of cellular immunity and inflammatory mediators to the resulting leukocyte accumulation were defined through cell transfer and pharmacological inhibition protocols. Eosinophil recruitment required Major Histocompatibility Complex Class It expression, and was abolished by the leukotriene B4 (LTB4) receptor antagonist CP 105.696, the 5-lipoxygenase inhibitor BWA4C and the 5-lipoxygenase activating protein inhibitor MK886. Eosinophil recruitment in EWI carriers followed transfer of: a) CD4(+) (but not CD4(-)) cells, harvested from EWI donors and restimulated ex vivo; b) their cell-free supernatants, containing LTB4. Restimulation in the presence of MK886 was ineffective. CC chemokine receptor ligand (CCL)5 and CCL2 were induced by ovalbumin challenge in vivo. mRNA for CCL17 and CCL11 was induced in ovalbumin-restimulated CD4(+) cells ex vivo. MK886 blocked induction of CCL17 Pretreatment of EWI carriers with MK886 eliminated the effectiveness of exogenously administered CCL11, CCL2 and CCL5. In conclusion, chemokine-producing, ovalburnin-restimulated CD4(+) cells initiate eosinophil recruitment which is strictly dependent on LTB4 production. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coupled bone turnover is directed by the expression of receptor-activated NF-kappa B ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG). Proinflammatory cytokines, such as interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) induce RANKL expression in bone marrow stromal cells. Here, we report that IL-1 beta and TNF-alpha-induced RANKL requires p38 mitogen-activating protein kinase (MAPK) pathway activation for maximal expression. Real-time PCR was used to assess the p38 contribution toward IL-1 beta and TNF-alpha-induced RANKL mRNA expression. Steady-state RANKL RNA levels were increased approximately 17-fold by IL-1 beta treatment and subsequently reduced similar to 70%-90% when p38 MAPK was inhibited with SB203580. RANKL mRNA stability data indicated that p38 MAPK did not alter the rate of mRNA decay in IL-1 beta-induced cells. Using a RANKL-luciferase cell line receptor containing a 120-kB segment of the 5' flanking region of the RANKL gene, reporter expression was stimulated 4-5-fold by IL-1 beta or TNF-alpha treatment. IL-1 beta-induced RANKL reporter expression was completely blocked with specific p38 inhibitors as well as dominant negative mutant constructs of MAPK kinase-3 and -6. In addition, blocking p38 signaling in bone marrow stromal cells partially inhibited IL-1 beta and TNF-alpha-induced osteoclastogenesis in vitro. Results from these studies indicate that p38 MAPK is a major signaling pathway involved in IL-1 beta and TNF-alpha-induced RANKL expression in bone marrow stromal cells.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The use of glycol methacrylate (GMA) avoids some technical artifacts, which are usually observed in paraffin-embedded sections, providing good morphological resolution. on the other hand, weak staining have been mentioned during the use of different methods in plastic sections. In the present study, changes in the histological staining procedures have been assayed during the use of staining and histochemical methods in different GMA-embedded tissues.Samples of tongue, submandibular and sublingual glands, cartilage, portions of respiratory tract and nervous ganglion were fixed in 4% formaldehyde and embedded in glycol methacrylate. The sections of tongue and nervous ganglion were stained by H&E. Picrosirius, Toluidine Blue and Sudan Black B methods were applied, respectively, for identification of collagen fibers in submandibular gland, sulfated glycosaminoglycans in cartilage (metachromasia) and myelin lipids in nervous ganglion. Periodic Acid-Schiff (PAS) method was used for detection of glycoconjugates in submandibular gland and cartilage while AB/PAS combined methods were applied for detection of mucins in the respiratory tract. In addition, a combination of Alcian Blue (AB) and Picrosirius methods was also assayed in the sublingual gland sections.The GMA-embedded tissue sections showed an optimal morphological integrity and were favorable to the staining methods employed in the present study. In the sections of tongue and nervous ganglion, a good contrast of basophilic and acidophilic structures was obtained by H&E. An intense eosinophilia was observed either in the striated muscle fibers or in the myelin sheaths in which the lipids were preserved and revealed by Sudan Black B. In the cartilage matrix, a strong metachromasia was revealed by Toluidine Blue in the negatively-charged glycosaminoglycans. In the chondrocytes, glycogen granules were intensely positive to PAS method. Extracellular glycoproteins were also PAS positive in the basal membrane and in the region occupied by the lamina externa and reticular fibers surrounding each smooth muscle cells of the blood vessels. In the epithelial cells of the respiratory tract, acid and neutral mucins were histochemically detected by AB and PAS methods, respectively. Moreover, granules containing acid and neutral mucins were revealed in purple by AB and PAS concomitantly. In the sublingual gland sections, a distinct affinity of acid mucins by AB (in turquoise-blue) and collagen fibers by Picrosirius (in red) was obtained when these methods were combined. Although some routine dyes used in paraffin sections have showed a weak stain in historesin sections, our results showed that different dyes could be applied in GMA sections if modified staining procedures were assayed. Therefore, appropriate staining contrast and, thus, detection of one or different substances in a same section can be acquired in association to the good morphological resolution provided by GMA. (C) 2003 Elsevier Ltd. All rights reserved.