781 resultados para low-carbon steel
Resumo:
Thermonuclear explosions may arise in binary star systems in which a carbon-oxygen (CO) white dwarf (WD) accretes helium-rich material from a companion star. If the accretion rate allows a sufficiently large mass of helium to accumulate prior to ignition of nuclear burning, the helium surface layer may detonate, giving rise to an astrophysical transient. Detonation of the accreted helium layer generates shock waves that propagate into the underlying CO WD. This might directly ignite a detonation of the CO WD at its surface (an edge-lit secondary detonation) or compress the core of the WD sufficiently to trigger a CO detonation near the centre. If either of these ignition mechanisms works, the two detonations (helium and CO) can then release sufficient energy to completely unbind the WD. These 'double-detonation' scenarios for thermonuclear explosion of WDs have previously been investigated as a potential channel for the production of Type Ia supernovae from WDs of ~ 1 M . Here we extend our 2D studies of the double-detonation model to significantly less massive CO WDs, the explosion of which could produce fainter, more rapidly evolving transients. We investigate the feasibility of triggering a secondary core detonation by shock convergence in low-mass CO WDs and the observable consequences of such a detonation. Our results suggest that core detonation is probable, even for the lowest CO core masses that are likely to be realized in nature. To quantify the observable signatures of core detonation, we compute spectra and light curves for models in which either an edge-lit or compression-triggered CO detonation is assumed to occur. We compare these to synthetic observables for models in which no CO detonation was allowed to occur. If significant shock compression of the CO WD occurs prior to detonation, explosion of the CO WD can produce a sufficiently large mass of radioactive iron-group nuclei to significantly affect the light curves. In particular, this can lead to relatively slow post-maximum decline. If the secondary detonation is edge-lit, however, the CO WD explosion primarily yields intermediate-mass elements that affect the observables more subtly. In this case, near-infrared observations and detailed spectroscopic analysis would be needed to determine whether a core detonation occurred. We comment on the implications of our results for understanding peculiar astrophysical transients including SN 2002bj, SN 2010X and SN 2005E. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.
Resumo:
We present a first principles molecular dynamics (FPMD) study of the interaction of low-energy neutral carbon projectiles with amorphous solid water clusters at 30 K. Reactions involving the carbon atom at an initial energy of 11 and 1.7 eV with 30-molecule clusters have been investigated. Simulations indicate that the formation of hydroxymethylene, an intermediate in formaldehyde production, dominates at the higher energy. The reaction proceeds by fragmenting a water molecule, binding the carbon to the OH radical, and saturating the C valence with a hydrogen atom that can arise from the originally dissociated water molecule, or through a chain of proton transfer events. We identified several possible pathways for the formation of HCOH. When the initial collision occurs at the periphery of the cluster, we observe the formation of CO and the evaporation of water molecules. At the lower energy water fragmentation is not favorable, thus leading to the formation of weakly bound carbon-water complexes. © 2013 American Chemical Society.
Resumo:
No abstract available
Resumo:
In the process of room-temperature low cycle fatigue, the China Low Activation Martensitic steel exhibits at the beginning cyclic hardening and then continuous cyclic softening. The grain size decreased and the martensitic lath transformed to cells/subgrains after the tests. The subgrains increase in size with increasing strain amplitude.
Resumo:
Creep test at 600 °C under 130 MPa for the China Low Activation Martensitic (CLAM) steel was performed up to 7913 h in this study. According to the stress level, the crept specimen was divided into three regions in order to investigate the influence of stress on Laves-phase formation. In addition to the expected M23C6 carbide and MX carbonitride, the amount and the size of Laves phase in these three regions on the crept specimen were characterized by transmission electron microscopy. Laves phase could be found in all the regions and the creep stress could promote the formation of Laves phase.
Resumo:
China Low Activation Martensitic (CLAM) steel is considered to be the main candidate material for the first wall components of future fusion reactors in China. In this paper, the low cycle fatigue (LCF) behavior of CLAM steel is studied under fully reversed tension–compression loading at 823 K in air. Total strain amplitude was controlled from 0.14% to 1.8% with a constant strain rate of 2.4×10−3 s−1. The corresponding plastic strain amplitude ranged from 0.023% to 1.613%. The CLAM steel displayed continuous softening to failure at 823 K. The relationship between strain, stress and fatigue life was obtained using the parameters obtained from fatigue tests. The LCF properties of CLAM steel at 823 K followed Coffin–Manson relationship. Furthermore, irregular serration was observed on the stress–strain hysteresis loops of CLAM steel tested with the total strain amplitude of 0.45–1.8%, which was attributed to the dynamic strain aging (DSA) effect. During continuous cyclic deformation, the microstructure and precipitate distribution of CLAM steel changed gradually. Many tempered martensitic laths were decomposed into subgrains, and the size and number of M23C6 carbide and MX carbonitride precipitates decreased with the increase of total strain amplitude. The response cyclic stress promoted the recovery of martensitic lath, while the thermal activation mainly played an important role on the growth of precipitates in CLAM steel at 823 K. In order to have a better understanding of high-temperature LCF behavior, the potential mechanisms controlling stress–strain response, DSA phenomenon and microstructure changes have also been evaluated.
Resumo:
A methodology is presented that combines a multi-objective evolutionary algorithm and artificial neural networks to optimise single-storey steel commercial buildings for net-zero carbon impact. Both symmetric and asymmetric geometries are considered in conjunction with regulated, unregulated and embodied carbon. Offsetting is achieved through photovoltaic (PV) panels integrated into the roof. Asymmetric geometries can increase the south facing surface area and consequently allow for improved PV energy production. An exemplar carbon and energy breakdown of a retail unit located in Belfast UK with a south facing PV roof is considered. It was found in most cases that regulated energy offsetting can be achieved with symmetric geometries. However, asymmetric geometries were necessary to account for the unregulated and embodied carbon. For buildings where the volume is large due to high eaves, carbon offsetting became increasingly more difficult, and not possible in certain cases. The use of asymmetric geometries was found to allow for lower embodied energy structures with similar carbon performance to symmetrical structures.
Resumo:
This short communication presents a research update of a new low nickel maraging steel, Fe–12.94%Ni–1.61%Al–1.01%Mo–0.23%Nb (wt%). Its yield stress and the tensile strength are 1080 MPa and 1180 MPa, respectively, after ageing treatment. Tensile specimens show ductile fracture. Fractography demonstrated deep dimples. Impact energy is 22 J on half-size specimens.
Resumo:
The low cycle fatigue (LCF) properties and the fracture behavior of China Low Activation Martensitic (CLAM) steel have been studied over a range of total strain amplitudes from 0.2 to 2.0%. The specimens were cycled using tension-compression loading under total strain amplitude control. The CLAM steel displayed initial hardening followed by continuous softening to failure at room temperature in air. The relationship between strain and fatigue life was predicted using the parameters obtained from fatigue test. The factors effecting on low cycle fatigue of CLAM steel consisted of initial state of matrix dislocation arrangement, magnitude of cyclic stress, magnitude of total strain amplitude and microstructure. The potential mechanisms controlling the stress response, cyclic strain resistance and low cycle fatigue life have been evaluated.
Resumo:
The optimisation is based on a combination of neural networks and evolutionary algorithm. It has selected buildings with different midpoint configurations with zero carbon impacts. With operational energy included the structures could be offset with asymmetry.
Resumo:
A new low-energy pathway is reported for the electrochemical reduction of CO2 to formate and syngas at low overpotentials, utilizing a reactive ionic liquid as the solvent. The superbasic tetraalkyl phosphonium ionic liquid [P66614][124Triz] is able to chemisorb CO2 through equimolar binding of CO2 with the 1,2,4-triazole anion. This chemisorbed CO2 can be reduced at silver electrodes at overpotentials as low as 0.17 V, forming formate. In contrast, physically absorbed CO2 within the same ionic liquid or in ionic liquids where chemisorption is impossible (such as [P66614][NTf2]) undergoes reduction at significantly increased overpotentials, producing only CO as the product.
Resumo:
Over 1 million km2 of seafloor experience permanent low-oxygen conditions within oxygen minimum zones (OMZs). OMZs are predicted to grow as a consequence of climate change, potentially affecting oceanic biogeochemical cycles. The Arabian Sea OMZ impinges upon the western Indian continental margin at bathyal depths (150 - 1500 m) producing a strong depth dependent oxygen gradient at the sea floor. The influence of the OMZ upon the short term processing of organic matter by sediment ecosystems was investigated using in situ stable isotope pulse chase experiments. These deployed doses of 13C:15N labeled organic matter onto the sediment surface at four stations from across the OMZ (water depth 540 - 1100 m; [O2] = 0.35 - 15 μM). In order to prevent experimentally anoxia, the mesocosms were not sealed. 13C and 15N labels were traced into sediment, bacteria, fauna and 13C into sediment porewater DIC and DOC. However, the DIC and DOC flux to the water column could not be measured, limiting our capacity to obtain mass-balance for C in each experimental mesocosm. Linear Inverse Modeling (LIM) provides a method to obtain a mass-balanced model of carbon flow that integrates stable-isotope tracer data with community biomass and biogeochemical flux data from a range of sources. Here we present an adaptation of the LIM methodology used to investigate how ecosystem structure influenced carbon flow across the Indian margin OMZ. We demonstrate how oxygen conditions affect food-web complexity, affecting the linkages between the bacteria, foraminifera and metazoan fauna, and their contributions to benthic respiration. The food-web models demonstrate how changes in ecosystem complexity are associated with oxygen availability across the OMZ and allow us to obtain a complete carbon budget for the stationa where stable-isotope labelling experiments were conducted.
Resumo:
We performed an ensemble of twelve five-year experiments using a coupled climate-carbon-cycle model with scenarios of prescribed atmospheric carbon dioxide concentration; CO2 was instantaneously doubled or quadrupled at the start of the experiments. Within these five years, climate feedback is not significantly influenced by the effects of climate change on the carbon system. However, rapid changes take place, within much less than a year, due to the physiological effect of CO2 on plant stomatal conductance, leading to adjustment in the shortwave cloud radiative effect over land, due to a reduction in low cloud cover. This causes a 10% enhancement to the radiative forcing due to CO2, which leads to an increase in the equilibrium warming of 0.4 and 0.7 K for doubling and quadrupling. The implications for calibration of energy-balance models are discussed.
Resumo:
Housing in the UK accounts for 30.5% of all energy consumed and is responsible for 25% of all carbon emissions. The UK Government’s Code for Sustainable Homes requires all new homes to be zero carbon by 2016. The development and widespread diffusion of low and zero carbon (LZC) technologies is recognised as being a key solution for housing developers to deliver against this zero-carbon agenda. The innovation challenge to design and incorporate these technologies into housing developers’ standard design and production templates will usher in significant technical and commercial risks. In this paper we report early results from an ongoing Engineering and Physical Sciences Research Council project looking at the innovation logic and trajectory of LZC technologies in new housing. The principal theoretical lens for the research is the socio-technical network approach which considers actors’ interests and interpretative flexibilities of technologies and how they negotiate and reproduce ‘acting spaces’ to shape, in this case, the selection and adoption of LZC technologies. The initial findings are revealing the form and operation of the technology networks around new housing developments as being very complex, involving a range of actors and viewpoints that vary for each housing development.
Resumo:
The UK Government is committed to all new homes being zero-carbon from 2016. The use of low and zero carbon (LZC) technologies is recognised by housing developers as being a key part of the solution to deliver against this zero-carbon target. The paper takes as its starting point that the selection of new technologies by firms is not a phenomenon which takes place within a rigid sphere of technical rationality (for example, Rip and Kemp, 1998). Rather, technology forms and diffusion trajectories are driven and shaped by myriad socio-technical structures, interests and logics. A literature review is offered to contribute to a more critical and systemic foundation for understanding the socio-technical features of the selection of LZC technologies in new housing. The problem is investigated through a multidisciplinary lens consisting of two perspectives: technological and institutional. The synthesis of the perspectives crystallises the need to understand that the selection of LZC technologies by housing developers is not solely dependent on technical or economic efficiency, but on the emergent ‘fit’ between the intrinsic properties of the technologies, institutional logics and the interests and beliefs of various actors in the housing development process.