936 resultados para localized exitons
Resumo:
Abstract: Background: Most signalling and regulatory proteins participate in transient protein-protein interactions during biological processes. They usually serve as key regulators of various cellular processes and are often stable in both protein-bound and unbound forms. Availability of high-resolution structures of their unbound and bound forms provides an opportunity to understand the molecular mechanisms involved. In this work, we have addressed the question "What is the nature, extent, location and functional significance of structural changes which are associated with formation of protein-protein complexes?" Results: A database of 76 non-redundant sets of high resolution 3-D structures of protein-protein complexes, representing diverse functions, and corresponding unbound forms, has been used in this analysis. Structural changes associated with protein-protein complexation have been investigated using structural measures and Protein Blocks description. Our study highlights that significant structural rearrangement occurs on binding at the interface as well as at regions away from the interface to form a highly specific, stable and functional complex. Notably, predominantly unaltered interfaces interact mainly with interfaces undergoing substantial structural alterations, revealing the presence of at least one structural regulatory component in every complex. Interestingly, about one-half of the number of complexes, comprising largely of signalling proteins, show substantial localized structural change at surfaces away from the interface. Normal mode analysis and available information on functions on some of these complexes suggests that many of these changes are allosteric. This change is largely manifest in the proteins whose interfaces are altered upon binding, implicating structural change as the possible trigger of allosteric effect. Although large-scale studies of allostery induced by small-molecule effectors are available in literature, this is, to our knowledge, the first study indicating the prevalence of allostery induced by protein effectors. Conclusions: The enrichment of allosteric sites in signalling proteins, whose mutations commonly lead to diseases such as cancer, provides support for the usage of allosteric modulators in combating these diseases.
Resumo:
Lepton masses and mixing angles via localization of 5-dimensional fields in the bulk are revisited in the context of Randall-Sundrum models. The Higgs is assumed to be localized on the IR brane. Three cases for neutrino masses are considered: (a) The higher-dimensional neutrino mass operator (LH.LH), (b) Dirac masses, and (c) Type I seesaw with bulk Majorana mass terms. Neutrino masses and mixing as well as charged lepton masses are fit in the first two cases using chi(2) minimization for the bulk mass parameters, while varying the O(1) Yukawa couplings between 0.1 and 4. Lepton flavor violation is studied for all the three cases. It is shown that large negative bulk mass parameters are required for the right-handed fields to fit the data in the LH.LH case. This case is characterized by a very large Kaluza-Klein (KK) spectrum and relatively weak flavor-violating constraints at leading order. The zero modes for the charged singlets are composite in this case, and their corresponding effective 4-dimensional Yukawa couplings to the KK modes could be large. For the Dirac case, good fits can be obtained for the bulk mass parameters, c(i), lying between 0 and 1. However, most of the ``best-fit regions'' are ruled out from flavor-violating constraints. In the bulk Majorana terms case, we have solved the profile equations numerically. We give example points for inverted hierarchy and normal hierarchy of neutrino masses. Lepton flavor violating rates are large for these points. We then discuss various minimal flavor violation schemes for Dirac and bulk Majorana cases. In the Dirac case with minimal-flavor-violation hypothesis, it is possible to simultaneously fit leptonic masses and mixing angles and alleviate lepton flavor violating constraints for KK modes with masses of around 3 TeV. Similar examples are also provided in the Majorana case.
Resumo:
This paper shows how multidisciplinary research can help policy makers develop policies for sustainable agricultural water management interventions by supporting a dialogue between government departments that are in charge of different aspects of agricultural development. In the Jaldhaka Basin in West Bengal, India, a stakeholder dialogue helped identify potential water resource impacts and livelihood implications of an agricultural water management rural electrification scenario. Hydrologic modelling demonstrated that the expansion of irrigation is possible with only a localized effect on groundwater levels, but cascading effects such as declining soil fertility and negative impacts from agrochemicals will need to be addressed.
Resumo:
We present thermal and electrical transport measurements of low-density (10(14) m(-2)), mesoscopic two-dimensional electron systems (2DESs) in GaAs/AlGaAs heterostructures at sub-Kelvin temperatures. We find that even in the supposedly strongly localized regime, where the electrical resistivity of the system is two orders of magnitude greater than the quantum of resistance h/e(2), the thermopower decreases linearly with temperature indicating metallicity. Remarkably, the magnitude of the thermopower exceeds the predicted value in noninteracting metallic 2DESs at similar carrier densities by over two orders of magnitude. Our results indicate a new quantum state and possibly a novel class of itinerant quasiparticles in dilute 2DESs at low temperatures where the Coulomb interaction plays a pivotal role.
Resumo:
A new thieno3,2-b]thiophenediketopyrrolopyrrole-benzo1,2-b:4,5-b']dithio phene based narrow optical gap co-polymer (PTTDPP-BDT) has been synthesized and characterized for field-effect transistors and solar cells. In field-effect transistors the polymer exhibited ambipolar charge transport behaviour with maximum hole and electron mobilities of 10(-3) cm(2) V-1 s(-1) and 10(-5) cm(2)V(-1) s(-1), respectively. The respectable charge transporting properties of the polymer were consistent with X-ray diffraction measurements that showed close molecular packing in the solid state. The difference in hole and electron mobilities was explained by density functional theory calculations, which showed that the highest occupied molecular orbital was delocalized along the polymer backbone with the lowest unoccupied molecular orbital localized on the bis(thieno3,2-b]thiophene)diketopyrrolopyrrole units. Bulk heterojunction photovoltaic devices with the fullerene acceptor PC70BM were fabricated and delivered a maximum conversion efficiency of 3.3% under AM1.5G illumination. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Lipoplexes formed by the pEGFP-C3 plasmid DNA (pDNA) and lipid mixtures containing cationic gemini surfactant of the 1,2-bis(hexadecyl dimethyl ammonium) Acmes family referred to as C16CnC16, where n = 2 3, 5, or 12, and the zwitterionic helper lipid, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) have been studied from a wide variety of physical, chemical, and biological standpoints. The study has been carried out using several experimental methods, such as zeta potential, gel electrophoresis, small-angle X-ray scattering (SAXS), cryo-TEM, gene transfection, cell viability/cytotoxicity, and confocal fluorescence microscopy. As reported recently in a communication (J. Am. Chem. Soc. 2011, 133, 18014), the detailed physicochemical and biological studies confirm that, in the presence of the studied series lipid mixtures, plasmid DNA is compacted with a large number of its associated Na+ counterions. This in turn yields a much lower effective negative charge, q(pDNA)(-), a value that has been experimentally obtained for each mixed lipid mixture. Consequently, the cationic lipid (CL) complexes prepared with pDNA and CL/DOPE mixtures to be used in gene transfection require significantly less amount of CL than the one estimated assuming a value of q(DNA)(-) = -2. This drives to a considerably lower cytotoxicity of the gene vector. Depending on the CL molar composition, alpha, of the lipid mixture, and the effective charge ratio of the lipoplex, rho(eff), the reported SAXS data indicate the presence of two or three structures in the same lipoplex, one in the DOPE-rich region, other in the CL-rich region, and another one present at any CL composition. Cryo-TEM and SAXS studies with C16CnC16/DOPE-pDNA lipoplexes indicate that pDNA is localized between the mixed lipid bilayers of lamellar structures within a monolayer of similar to 2 nm. This is consistent with a highly compacted supercoiled pDNA conformation compared with that of linear DNA. Transfection studies were carried out with HEK293T, HeLa, CHO, U343, and H460 cells. The alpha and rho(eff) values for each lipid mixture were optimized on HEK293T cells for transfection, and using these values, the remaining cells were also transfected in absence (-FBS-FBS) and presence (-FBS+FBS) of serum. The transfection efficiency was higher with the CLs of shorter gemini spacers (n = 2 or 3). Each formulation expressed GFP on pDNA transfection and confocal fluorescence microscopy corroborated the results. C16C2C16/DOPE mixtures were the most efficient toward transfection among all the lipid mixtures and, in presence of serum, even better than the Lipofectamine2000, a commercial transfecting agent Each lipid combination was safe and did not show any significant levels of toxicity. Probably, the presence of two coexisting lamellar structures in lipoplexes synergizes the transfection efficiency of the lipid mixtures which are plentiful in the lipoplexes formed by CLs with short spacer (n = 2, 3) than those with the long spacer (n = 5, 12).
Resumo:
Recently it has been shown that the fidelity of the ground state of a quantum many-body system can be used todetect its quantum critical points (QCPs). If g denotes the parameter in the Hamiltonian with respect to which the fidelity is computed, we find that for one-dimensional models with large but finite size, the fidelity susceptibility chi(F) can detect a QCP provided that the correlation length exponent satisfies nu < 2. We then show that chi(F) can be used to locate a QCP even if nu >= 2 if we introduce boundary conditions labeled by a twist angle N theta, where N is the system size. If the QCP lies at g = 0, we find that if N is kept constant, chi(F) has a scaling form given by chi(F) similar to theta(-2/nu) f (g/theta(1/nu)) if theta << 2 pi/N. We illustrate this both in a tight-binding model of fermions with a spatially varying chemical potential with amplitude h and period 2q in which nu = q, and in a XY spin-1/2 chain in which nu = 2. Finally we show that when q is very large, the model has two additional QCPs at h = +/- 2 which cannot be detected by studying the energy spectrum but are clearly detected by chi(F). The peak value and width of chi(F) seem to scale as nontrivial powers of q at these QCPs. We argue that these QCPs mark a transition between extended and localized states at the Fermi energy. DOI: 10.1103/PhysRevB.86.245424
Resumo:
A new family of ricinoleic acid based polyesters was synthesized using catalyst free melt-condensation polymerization with sebacic acid, citric acid, mannitol and ricinoleic acid as precursors. The use of FT-IR and NMR characterisation techniques confirms the presence of ester linkages in the as-synthesized polymers. Depending on the precursor combination, their relative amount and the degree of curing, a broad range of elastic modulus (22-327 MPa) and tensile strength (0.7-12.7 MPa) can be obtained in the newly synthesized biopolymers. The polymers show rubbery behaviour at a physiological temperature (37 degrees C) and the contact angles of the synthesized polymers fall in the range of 42 degrees to 71 degrees, making them ideal substrates to study delivery of drugs through polymer scaffolds. The cytocompatibility assessment of the cured polymers confirmed good cell attachment and growth of smooth muscle cells (C2C12 myoblast cells). Importantly, oriented cell growth was observed after culturing myoblast cells for 3 days. The in vitro degradation in PBS indicates that the mild cured polymers follow a first order reaction kinetics and have degradation rate constants in the range of 0.009-0.038 h(-1), depending on the relative proportions of monomers. Overall, the results of our study indicate that the physical properties can be tailored by varying the composition of the monomers and curing conditions in the newly developed polyesters. Hence, they may be used as potential substrates for tissue engineering scaffolds and for localized drug delivery.
Resumo:
We present a novel approach to represent transients using spectral-domain amplitude-modulated/frequency -modulated (AM-FM) functions. The model is applied to the real and imaginary parts of the Fourier transform (FT) of the transient. The suitability of the model lies in the observation that since transients are well-localized in time, the real and imaginary parts of the Fourier spectrum have a modulation structure. The spectral AM is the envelope and the spectral FM is the group delay function. The group delay is estimated using spectral zero-crossings and the spectral envelope is estimated using a coherent demodulator. We show that the proposed technique is robust to additive noise. We present applications of the proposed technique to castanets and stop-consonants in speech.
Resumo:
Influenza virus evades host immunity through antigenic drift and shift, and continues to circulate in the human population causing periodic outbreaks including the recent 2009 pandemic. A large segment of the population was potentially susceptible to this novel strain of virus. Historically, monoclonal antibodies (MAbs) have been fundamental tools for diagnosis and epitope mapping of influenza viruses and their importance as an alternate treatment option is also being realized. The current study describes isolation of a high affinity (K-D = 2.1 +/- 0.4 pM) murine MAb, MA2077 that binds specifically to the hemagglutinin (HA) surface glycoprotein of the pandemic virus. The antibody neutralized the 2009 pandemic H1N1 virus in an in vitro microneutralization assay (IC50 = 0.08 mu g/ml). MA2077 also showed hemagglutination inhibition activity (HI titre of 0.50 mu g/ml) against the pandemic virus. In a competition ELISA, MA2077 competed with the binding site of the human MAb, 2D1 (isolated from a survivor of the 1918 Spanish flu pandemic) on pandemic H1N1 HA. Epitope mapping studies using yeast cell-surface display of a stable HA1 fragment, wherein `Sa' and `Sb' sites were independently mutated, localized the binding site of MA2077 within the `Sa' antigenic site. These studies will facilitate our understanding of antigen antibody interaction in the context of neutralization of the pandemic influenza virus.
Resumo:
Intraseasonal time-scales play an important role in tropical variability. Two modes that contribute significantly to tropical intraseasonal variability (ISV) are the eastward-propagating MaddenJulian Oscillation (MJO), and westward-moving moist equatorial Rossby waves. This note reports on a correspondence between the longitudinal gradient of mean tropical precipitable water (PW), and the geographical regions of genesis, and convective activity, of both these large-scale tropical systems. Our finding is based on an analysis of PW from the MERRA reanalysis product. The data indicate that the mean tropical PW has a dominant wavenumber two (three) structure in longitude in the Northern (Southern) Hemisphere. Departures from a longitudinally homogeneous state are attributed to the influence of subtropical anticyclones, and are accentuated by monsoonal regions of both hemispheres. This mean structure results in a sharply localized longitudinal gradient of PW. Remarkably, regions with positive gradients (such as the Northern and Southern Hemisphere western Indian Ocean), i.e. they have larger PW to the east, are the very zones that are implicated in the formation, and show high levels of convective activity, of the eastward-moving MJO. On the other hand, regions with negative gradients (such as the Southern Hemisphere central Pacific) are the very regions where genesis, and maxima in variance, of westward-moving moist equatorial Rossby waves are known to occur. Apart from providing a first-order longitudinal footprint of the convective phase of these systems, this correspondence reinforces the role of the mean climatic state in tropical ISV. Copyright (c) 2012 Royal Meteorological Society
Resumo:
Theterahertz (THz) propagation in real tissues causes heating as with any other electromagnetic radiation propagation. A finite-element (FE) model that provides numerical solutions to the heat conduction equation coupled with realistic models of tissues is employed in this study to compute the temperature raise due to THz propagation. The results indicate that the temperature raise is dependent on the tissue type and is highly localized. The developed FE model was validated through obtaining solutions for the steady-state case and showing that they were in good agreement with the analytical solutions. These types of models can also enable computation of specific absorption rates, which are very critical in planning/setting up experiments involving biological tissues.
Resumo:
The electronic state in ultrathin gold nanowires is tuned by careful engineering of the device architecture via a chemical methodology. The electrons are localized to an insulating state (showing variable range hopping transport) by simply bringing them close to the substrate, while the insertion of an interlayer leads to a Tomonaga Luttinger liquid state.
Resumo:
Superplastic tensile tests on warm rolled and optimally annealed boron modified alloy Ti-6Al-4V-0.1B at a temperature of 850 degrees C and initial strain rate of 3 x 10(-4) s(-1) results in a higher elongation (similar to 500%) compared to the base alloy Ti-6Al-4V (similar to 400%). The improvement in superplasticity has been attributed to enhanced contribution from interfacial boundary sliding to the overall deformation for the boron modified alloy. The boundary sliding was facilitated by the starting microstructure which predominantly contains small equiaxed primary a grains with narrow size distribution. Dynamic processes such as coarsening and globularization of primary a phase occur under the test condition but do not significantly contribute to the observed difference in superplasticity between the two alloys. In spite of cavitation takes place around the TiB particles during deformation, they do not cause macroscopic cracking and early fracture by virtue of the cavities being extremely localized. Localized cavitation is found to correlate with increased material transfer due to faster diffusion.
Resumo:
Adaptive Mesh Refinement is a method which dynamically varies the spatio-temporal resolution of localized mesh regions in numerical simulations, based on the strength of the solution features. In-situ visualization plays an important role for analyzing the time evolving characteristics of the domain structures. Continuous visualization of the output data for various timesteps results in a better study of the underlying domain and the model used for simulating the domain. In this paper, we develop strategies for continuous online visualization of time evolving data for AMR applications executed on GPUs. We reorder the meshes for computations on the GPU based on the users input related to the subdomain that he wants to visualize. This makes the data available for visualization at a faster rate. We then perform asynchronous executions of the visualization steps and fix-up operations on the CPUs while the GPU advances the solution. By performing experiments on Tesla S1070 and Fermi C2070 clusters, we found that our strategies result in 60% improvement in response time and 16% improvement in the rate of visualization of frames over the existing strategy of performing fix-ups and visualization at the end of the timesteps.