900 resultados para liquid flow monitoring
Resumo:
A new microscale method is reported for the determination of doxorubicin and its active metabolite, doxorubicinol, in parrot plasma. Sample workup involved acetonitrile protein precipitation, ethyl acetate extraction, followed by back extraction into HCl. Separations were achieved on a phenyl-hexyl column at 30 degrees C using acetonitrile (17%, v/v) in 0.01 M orthophosphoric acid (83%, v/v) delivered via a linear flow program. Fluorometric detection wavelengths were 235 nm (excitation) and 550 nm (emission). Calibration plots were linear (1 2 > 0.999), and recoveries were 71-87% from 20 to 400 ng/mL. Assay imprecision was
Resumo:
Owing to the high degree of vulnerability of liquid retaining structures to corrosion problems, there are stringent requirements in its design against cracking. In this paper, a prototype knowledge-based system is developed and implemented for the design of liquid retaining structures based on the blackboard architecture. A commercially available expert system shell VISUAL RULE STUDIO working as an ActiveX Designer under the VISUAL BASIC programming environment is employed. Hybrid knowledge representation approach with production rules and procedural methods under object-oriented programming are used to represent the engineering heuristics and design knowledge of this domain. It is demonstrated that the blackboard architecture is capable of integrating different knowledge together in an effective manner. The system is tailored to give advice to users regarding preliminary design, loading specification and optimized configuration selection of this type of structure. An example of application is given to illustrate the capabilities of the prototype system in transferring knowledge on liquid retaining structure to novice engineers. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A volume-of-fluid numerical method is used to predict the dynamics of drop formation in an axi-symmetric microfluidic flow-focusing geometry for a liquid-liquid system. The Reynolds numbers and Weber numbers approximate those of a three-dimensional flow in recently published experiments. We compare the predicted drop formation with the experimental results at various flow rates, and discuss the mechanisms of drop formation in this context. Despite the differences in geometry, we find qualitative correspondence between the numerical and experimental results. Both end-pinching and capillary-wave instability are important for droplet break-up at the higher flow rates.
Resumo:
A structurally-based quasi-chemical viscosity model for fully liquid slags in the Al2O3 CaO-'FeO'-MgO-SiO2 system has been developed. The model links the slag viscosities to the internal structures of the melts through the concentrations of various Si0.5O, Me2/nn+O and Me1/nn+Si0.25O viscous flow structural units. The concentrations of these structural units are derived from a quasi-chemical thermodynamic model of the system. The model described in this series of papers enables the viscosities of liquid slags to be predicted within experimental uncertainties over the whole range of temperatures and compositions in the Al2O3 CaOMgO-SiO2 system.
Resumo:
A structurally-based quasi-chemical viscosity model has been developed for the Al2O3 CaO-'FeO'-MgO-SiO2 system. The model links the slag viscosity to the internal structure of melts through the concentrations of various anion/cation Si0.5O, Me2/nn+O and Me1/nn+Si0.25O viscous flow structural units. The concentrations of structural units are derived from the quasi-chemical thermodynamic model. The focus of the work described in the present paper is the analysis of experimental data and the viscosity models for fully liquid slags in the Al2O3-CaO-MgO, Al2O3 MgO-SiO2 and CaO-MgO-SiO2 systems.
Resumo:
In this paper we examine the effect of contact angle (or surface wettability) on the convective heat transfer coefficient in microchannels. Slip flow, where the fluid velocity at the wall is non-zero, is most likely to occur in microchannels due to its dependence on shear rate or wall shear stress. We show analytically that for a constant pressure drop, the presence of slip increases the Nusselt number. In a microchannel heat exchanger we modified the surface wettability from a contact angle of 20 degrees-120 degrees using thin film coating technology. Apparent slip flow is implied from pressure and flow rate measurements with a departure from classical laminar friction coefficients above a critical shear rate of approximately 10,000 s(-1). The magnitude of this departure is dependant on the contact angle with higher contact angles surfaces exhibiting larger pressure drop decreases. Similarly, the non-dimensional heat flux is found to decrease relative to laminar non-slip theory, and this decrease is also a function of the contact angle. Depending on the contact angle and the wall shear rate, variations in the heat transfer rate exceeding 10% can be expected. Thus the contact angle is an important consideration in the design of micro, and even more so, nano heat exchangers. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Listeria monocytogenes has previously been shown to adapt to a wide variety of environmental niches, principally those associated with low pH, and this compromises its control in food environments. An understanding of the mechanism(s) by which L. monocytogenes survives unfavourable environmental conditions will aid in developing new food processing methods to control the organism in foodstuffs. The present Study aimed to gain a further understanding of the physiological basis for the differential effects of one control strategy, namely the use of the lantibiotic nisin. Using propidium iodide (PI) to probe membrane integrity it was shown that L. monocytogenes Scott A was sensitive to nisin (8 ng mL(-1)) but this was growth phase dependent with stationary phase cells (OD600=1.2) being much more resistant than exponential phase cells (OD600=0.38). We demonstrate that, using a combination of techniques including fluorescence activated cell sorting (FACS), the membrane adaptations underpinning nisin resistance are triggered much earlier (OD600 < 0.5) than the onset of stationary phase. The significance of these findings in terms of mechanism and application are discussed. (c) 2005 Elsevier B.V.All rights reserved.
Resumo:
Chaotic orientations of a top containing a fluid filled cavity are investigated analytically and numerically under small perturbations. The top spins and rolls in nonsliding contact with a rough horizontal plane and the fluid in the ellipsoidal shaped cavity is considered to be ideal and describable by finite degrees of freedom. A Hamiltonian structure is established to facilitate the application of Melnikov-Holmes-Marsden (MHM) integrals. In particular, chaotic motion of the liquid-filled top is identified to be arisen from the transversal intersections between the stable and unstable manifolds of an approximated, disturbed flow of the liquid-filled top via the MHM integrals. The developed analytical criteria are crosschecked with numerical simulations via the 4th Runge-Kutta algorithms with adaptive time steps.
Resumo:
A modified Volume-of-Fluid (VOF) numerical method is used to predict the dynamics of a liquid drop of a low viscosity dilute polymer solution, forming in air from a circular nozzle. Viscoelastic effects are represented using an Oldroyd-B model. Predicted drop shapes are compared with experimental observations. The main features, including the timing of the shape evolution and the bead-on-a-string effect, are well reproduced by the simulations. The results confirm published conclusions of the third author, that the deformation is effectively Newtonian until near the time of Newtonian pinch-off and that the elastic stress becomes large in the pinch region due to the higher extensional flow there.
Resumo:
We report here a validated method for the quantification of a new immunosuppressant drug FTY720, using HPLC-tandem mass spectrometry. Whole blood samples (500 mu l) were subjected to liquid-liquid extraction, in the presence of an internal standard (Y-32919). Mass spectrometric detection was by selected reaction monitoring with an atmospheric pressure chemical ionization source in positive ionization mode (FTY720: m/z 308.3 -> 255.3). The assay was linear from 0.2 to 25 mu g/l (r(2) > 0.997, n = 5). The inter- and intra-day analytical recovery and imprecision for quality control samples (0.5, 7 and 15 mu g/l) were 95.8-103.2 and < 5.5%, respectively. At the lower limit of quantification (0.2 mu g/l) the interand intra-day analytical recovery was 99.0-102.8% with imprecision of < 7.6% (n = 5). The assay had a mean relative recovery of 100.5 +/- 5.8% (n = 15). Extracted samples were stable for 16 h. IFTY720 quality control samples were stable at room temperature for 16 h at 4 degrees C for at least 8 days and when taken through at least three freeze-thaw cycles. In conclusion, the method described displays analytical performance characteristics that are suitable for pharmacokinetic studies in humans. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Identifying water wastage in forms of leaks in a water distribution network of any city becomes essential as droughts are presenting serious threats to few major cities. In this paper, we propose a deployment of sensor network for monitoring water flow in any water distribution network. We cover the issues related with designing such a dedicated sensor network by considering types of sensors required, sensors' functionality, data collection, and providing computation serving as leak detection mechanism. The main focus of this paper is on appropriate network segmentation that provides the base for hierarchical approach to pipes' failure detection. We show a method for sensors allocation to the network in order to facilitate effective pipes monitoring. In general, the identified computational problem belongs to hard problems. The paper shows a heuristic method to build effective hierarchy of the network segmentation.
Resumo:
This work has, as its objective, the development of non-invasive and low-cost systems for monitoring and automatic diagnosing specific neonatal diseases by means of the analysis of suitable video signals. We focus on monitoring infants potentially at risk of diseases characterized by the presence or absence of rhythmic movements of one or more body parts. Seizures and respiratory diseases are specifically considered, but the approach is general. Seizures are defined as sudden neurological and behavioural alterations. They are age-dependent phenomena and the most common sign of central nervous system dysfunction. Neonatal seizures have onset within the 28th day of life in newborns at term and within the 44th week of conceptional age in preterm infants. Their main causes are hypoxic-ischaemic encephalopathy, intracranial haemorrhage, and sepsis. Studies indicate an incidence rate of neonatal seizures of 0.2% live births, 1.1% for preterm neonates, and 1.3% for infants weighing less than 2500 g at birth. Neonatal seizures can be classified into four main categories: clonic, tonic, myoclonic, and subtle. Seizures in newborns have to be promptly and accurately recognized in order to establish timely treatments that could avoid an increase of the underlying brain damage. Respiratory diseases related to the occurrence of apnoea episodes may be caused by cerebrovascular events. Among the wide range of causes of apnoea, besides seizures, a relevant one is Congenital Central Hypoventilation Syndrome (CCHS) \cite{Healy}. With a reported prevalence of 1 in 200,000 live births, CCHS, formerly known as Ondine's curse, is a rare life-threatening disorder characterized by a failure of the automatic control of breathing, caused by mutations in a gene classified as PHOX2B. CCHS manifests itself, in the neonatal period, with episodes of cyanosis or apnoea, especially during quiet sleep. The reported mortality rates range from 8% to 38% of newborn with genetically confirmed CCHS. Nowadays, CCHS is considered a disorder of autonomic regulation, with related risk of sudden infant death syndrome (SIDS). Currently, the standard method of diagnosis, for both diseases, is based on polysomnography, a set of sensors such as ElectroEncephaloGram (EEG) sensors, ElectroMyoGraphy (EMG) sensors, ElectroCardioGraphy (ECG) sensors, elastic belt sensors, pulse-oximeter and nasal flow-meters. This monitoring system is very expensive, time-consuming, moderately invasive and requires particularly skilled medical personnel, not always available in a Neonatal Intensive Care Unit (NICU). Therefore, automatic, real-time and non-invasive monitoring equipments able to reliably recognize these diseases would be of significant value in the NICU. A very appealing monitoring tool to automatically detect neonatal seizures or breathing disorders may be based on acquiring, through a network of sensors, e.g., a set of video cameras, the movements of the newborn's body (e.g., limbs, chest) and properly processing the relevant signals. An automatic multi-sensor system could be used to permanently monitor every patient in the NICU or specific patients at home. Furthermore, a wire-free technique may be more user-friendly and highly desirable when used with infants, in particular with newborns. This work has focused on a reliable method to estimate the periodicity in pathological movements based on the use of the Maximum Likelihood (ML) criterion. In particular, average differential luminance signals from multiple Red, Green and Blue (RGB) cameras or depth-sensor devices are extracted and the presence or absence of a significant periodicity is analysed in order to detect possible pathological conditions. The efficacy of this monitoring system has been measured on the basis of video recordings provided by the Department of Neurosciences of the University of Parma. Concerning clonic seizures, a kinematic analysis was performed to establish a relationship between neonatal seizures and human inborn pattern of quadrupedal locomotion. Moreover, we have decided to realize simulators able to replicate the symptomatic movements characteristic of the diseases under consideration. The reasons is, essentially, the opportunity to have, at any time, a 'subject' on which to test the continuously evolving detection algorithms. Finally, we have developed a smartphone App, called 'Smartphone based contactless epilepsy detector' (SmartCED), able to detect neonatal clonic seizures and warn the user about the occurrence in real-time.
Resumo:
The performances of five different ESI sources coupled to a polystyrene-divinylbenzene monolithic column were compared in a series of LC-ESI-MS/MS analyses of Escherichia coli outer membrane proteins. The sources selected for comparison included two different modifications of the standard electrospray source, a commercial low-flow sprayer, a stainless steel nanospray needle and a coated glass Picotip. Respective performances were judged on sensitivity and the number and reproducibility of significant protein identifications obtained through the analysis of multiple identical samples. Data quality varied between that of a ground silica capillary, with 160 total protein identifications, the lowest number of high quality peptide hits obtained (3012), and generally peaks of lower intensity; and a stainless steel nanospray needle, which resulted in increased precursor ion abundance, the highest-quality peptide fragmentation spectra (5414) and greatest number of total protein identifications (259) exhibiting the highest MASCOT scores (average increase in score of 27.5% per identified protein). The data presented show that, despite increased variability in comparative ion intensity, the stainless steel nanospray needle provides the highest overall sensitivity. However, the resulting data were less reproducible in terms of proteins identified in complex mixtures -- arguably due to an increased number of high intensity precursor ion candidates.
Resumo:
In this paper, we propose and demonstrate a novel scheme for simultaneous measurement of liquid level and temperature based on a simple uniform fiber Bragg grating (FBG) by monitoring both the short-wavelength-loss peaks and its Bragg resonance. The liquid level can be measured from the amplitude changes of the short-wavelength-loss peaks, while temperature can be measured from the wavelength shift of the Bragg resonance. Both theoretical simulation results and experimental results are presented. Such a scheme has some advantages including robustness, simplicity, flexibility in choosing sensitivity and simultaneous temperature measurement capability.