981 resultados para lattice


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The elastic properties of 1D nanostructures such as nanowires are often measured experimentally through actuation of the nanowire at its resonance frequency, and then relating the resonance frequency to the elastic stiffness using elementary beam theory. In the present work, we utilize large scale molecular dynamics simulations to report a novel beat phenomenon in [110]oriented Ag nanowires. The beat phenomenon is found to arise from the asymmetry of the lattice spacing in the orthogonal elementary directions of the [110] nanowire, i.e. the [-110] and [001] directions, which results in two different principal moments of inertia. Because of this, actuations imposed along any other direction are found to decompose into two orthogonal vibrational components based on the actuation angle relative to these two elementary directions, with this phenomenon being generalizable to <110> FCC nanowires of different materials (Cu, Au, Ni, Pd and Pt). The beat phenomenon is explained using a discrete moment of inertia model based on the hard sphere assumption, the model is utilized to show that surface effects enhance the beat phenomenon, while the effect is reduced with increasing nanowires cross-sectional size or aspect ratio. Most importantly, due to the existence of the beat phenomena, we demonstrate that in resonance experiments only a single frequency component is expected to be observed, particularly when the damping ratio is relatively large or very small. Furthermore, for a large range of actuation angles, the lower frequency is more likely to be detected than the higher one, which implies that experimental predictions of Young’s modulus obtained from resonance may in fact be under predictions. The present study therefore has significant implications for experimental interpretations of Young’s modulus as obtained via resonance testing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dual-mode vibration of nanowires has been reported experimentally through actuation of the nanowire at its resonance frequency, which is expected to open up a variety of new modalities for the NEMS that could operate in the nonlinear regime. In the present work, we utilize large scale molecular dynamics simulations to investigate the dual-mode vibration of <110> Ag nanowires with triangular, rhombic and truncated rhombic cross-sections. By incorporating the generalized Young-Laplace equation into Euler-Bernoulli beam theory, the influence of surface effects on the dual-mode vibration is studied. Due to the different lattice spacing in principal axes of inertia of the {110} atomic layers, the NW is also modeled as a discrete system to reveal the influence from such specific atomic arrangement. It is found that the <110> Ag NW will under a dual-mode vibration if the actuation direction is deviated from the two principal axes of inertia. The predictions of the two first mode natural frequencies by the classical beam model appear underestimated comparing with the MD results, which are found to be enhanced by the discrete model. Particularly, the predictions by the beam theory with the contribution of surface effects are uniformly larger than the classical beam model, which exhibit better agreement with MD results for larger cross-sectional size. However, for ultrathin NWs, current consideration of surface effects is still experiencing certain inaccuracy. In all, for all different cross-sections, the inclusion of surface effects is found to reduce the difference between the two first mode natural frequencies. This trend is observed consistent with MD results. This study provides a first comprehensive investigation on the dual-mode vibration of <110> oriented Ag NWs, which is supposed to benefit the applications of NWs that acting as a resonating beam.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Moving fronts of cells are essential features of embryonic development, wound repair and cancer metastasis. This paper describes a set of experiments to investigate the roles of random motility and proliferation in driving the spread of an initially confined cell population. The experiments include an analysis of cell spreading when proliferation was inhibited. Our data have been analysed using two mathematical models: a lattice-based discrete model and a related continuum partial differential equation model. We obtain independent estimates of the random motility parameter, D, and the intrinsic proliferation rate, λ, and we confirm that these estimates lead to accurate modelling predictions of the position of the leading edge of the moving front as well as the evolution of the cell density profiles. Previous work suggests that systems with a high λ/D ratio will be characterized by steep fronts, whereas systems with a low λ/D ratio will lead to shallow diffuse fronts and this is confirmed in the present study. Our results provide evidence that continuum models, based on the Fisher–Kolmogorov equation, are a reliable platform upon which we can interpret and predict such experimental observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure of Cu-ZSM-5 catalysts that show activity for direct NO decomposition and selective catalytic reduction of NOx by hydrocarbons has been investigated by a multitude of modern surface analysis and spectroscopy techniques including X-ray photoelectron spectroscopy, thermogravimetric analysis, and in situ Fourier transform infrared spectroscopy. A series of four catalysts were prepared by exchange of Na-ZSM-5 with dilute copper acetate, and the copper loading was controlled by variation of the solution pH. Underexchanged catalysts contained isolated Cu2+OH-(H2O) species and as the copper loading was increased Cu2+ ions incorporated into the zeolite lattice appeared. The sites at which the latter two copper species were located were fundamentally different. The Cu2+OH-(H2O) moieties were bound to two lattice oxygen ions and associated with one aluminum framework species. In contrast, the Cu2+ ions were probably bound to four lattice oxygen ions and associated with two framework aluminum ions. Once the Cu-ZSM-5 samples attained high levels of exchange, the development of [Cu(μ-OH)2Cu]n2+OH-(H2O) species along with a small concentration of Cu(OH)2 was observed. On activation in helium to 500°C the Cu2+OH-(H2O) species transformed into Cu2+O- and Cu+ moieties, whereas the Cu2+ ions were apparently unaffected by this treatment (apart from the loss of ligated water molecules). Calcination of the precursors resulted in the formation of Cu2+O2- and a one-dimensional CuO species. Temperature-programmed desorption studies revealed that oxygen was removed from the latter two species at 407 and 575°C, respectively. © 1999 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure and composition of reaction products between Bi-Sr-Ca-Cu-oxide (BSCCO) thick films and alumina substrates have been characterized using a combination of electron diffraction, scanning electron microscopy and energy dispersive X-ray spectrometry (EDX). Sr and Ca are found to be the most reactive cations with alumina. Sr4Al6O12SO4 is formed between the alumina substrates and BSCCO thick films prepared from paste with composition close to Bi-2212 (and Bi-2212 + 10 wt.% Ag). For paste with composition close to Bi(Pb)-2223 + 20 wt.% Ag, a new phase with f.c.c. structure, lattice parameter about a = 24.5 A and approximate composition Al3Sr2CaBi2CuOx has been identified in the interface region. Understanding and control of these reactions is essential for growth of high quality BSCCO thick films on alumina. (C) 1997 Elsevier Science S.A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructure of Bi-Sr-Ca-Cu-oxide (BSCCO) thick films on alumina substrates has been characterized using a combination of X-ray diffractometry, scanning electron microscopy, transmission electron microscopy of sections across the film/substrate interface and energy-dispersive X-ray spectrometry. A reaction layer formed between the BSCCO films and the alumina substrates. This chemical interaction is largely responsible for off-stoichiometry of the films and is more significant after partial melting of the films. A new phase with fee structure, lattice parameter a = 2.45 nm and approximate composition Al3Sr2CaBi2CuOx has been identified as reaction product between BSCCO and Al2O3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five basalt samples from the Point Sal ophiolite, California, were examined using HRTEM and AEM in order to compare observations with interpretations of XRD patterns and microprobe analyses. XRD data from ethylene-glycol-saturated samples indicate the following percentages of chlorite in mixed-layer chlorite-smectite identified for each specimen: (i) L2036 almost-equal-to 50%, (ii) L2035 almost-equal-to 70 and 20%, (iii) 1A-13 almost-equal-to 70%, (iv) 1B-42 almost-equal-to 70%, and (v) 1B-55 = 100%. Detailed electron microprobe analyses show that 'chlorite' analyses with high Si, K, Na and Ca contents are the result of interlayering with smectite-like layers. The Fe/(Fe + Mg) ratios of mixed-layer phyllosilicates from Point Sal samples are influenced by the bulk rock composition, not by the percentage of chlorite nor the structure of the phyllosilicate. Measurements of lattice-fringe images indicate that both smectite and chlorite layers are present in the Point Sal samples in abundances similar to those predicted with XRD techniques and that regular alternation of chlorite and smectite occurs at the unit-cell scale. Both 10- and 14-angstrom layers were recorded with HRTEM and interpreted to be smectite and chlorite, respectively. Regular alternation of chlorite and smectite (24-angstrom periodicity) occurs in upper lava samples L2036 and 1A-13, and lower lava sample 1B-42 for as many as seven alternations per crystallite with local layer mistakes. Sample L2035 shows disordered alternation of chlorite and smectite, with juxtaposition of smectite-like layers, suggesting that randomly interlayered chlorite (< 0.5)-smectite exists. Images of lower lava sample 1B-55 show predominantly 14-angstrom layers. Units of 24 angstrom tend to cluster in what may otherwise appear to be disordered mixtures, suggesting the existence of a corrensite end-member having thermodynamic significance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HRTEM has been used to examine illite/smectite from the Mancos shale, rectorite from Garland County, Arkansas; illite from Silver Hill, Montana; Na-smectite from Crook County, Wyoming; corrensite from Packwood, Washington; and diagenetic chlorite from the Tuscaloosa formation. Thin specimens were prepared by ion milling, ultra-microtome sectioning and/or grain dispersal on a porous carbon substrate. Some smectite-bearing clays were also examined after intercalation with dodecylamine hydrochloride (DH). Intercalation of smectite with DH proved to be a reliable method of HRTEM imaging of expanded smectite, d(001) 16 A which could then be distinguished from unexpanded illite, d(001) 10 A. Lattice fringes of basal spacings of DH-intercalated rectorite and illite/smectite showed 26 A periodicity. These data support XRD studies which suggest that these samples are ordered, interstratified varieties of illite and smectite. The ion-thinned, unexpanded corrensite sample showed discrete crystallites containing 10 A and 14 A basal spacings corresponding with collapsed smectite and chlorite, respectively. Regions containing disordered layers of chlorite and smectite were also noted. Crystallites containing regular alternations of smectite and chlorite were not common. These HRTEM observations of corrensite did not corroborate XRD data. Particle sizes parallel to the c axis ranged widely for each sample studied, and many particles showed basal dimensions equivalent to > five layers. -J.M.H.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The assembly of retroviruses such as HIV-1 is driven by oligomerization of their major structural protein, Gag. Gag is a multidomain polyprotein including three conserved folded domains: MA (matrix), CA (capsid) and NC (nucleocapsid)(1). Assembly of an infectious virion proceeds in two stages(2). In the first stage, Gag oligomerization into a hexameric protein lattice leads to the formation of an incomplete, roughly spherical protein shell that buds through the plasma membrane of the infected cell to release an enveloped immature virus particle. In the second stage, cleavage of Gag by the viral protease leads to rearrangement of the particle interior, converting the non-infectious immature virus particle into a mature infectious virion. The immature Gag shell acts as the pivotal intermediate in assembly and is a potential target for anti-retroviral drugs both in inhibiting virus assembly and in disrupting virus maturation(3). However, detailed structural information on the immature Gag shell has not previously been available. For this reason it is unclear what protein conformations and interfaces mediate the interactions between domains and therefore the assembly of retrovirus particles, and what structural transitions are associated with retrovirus maturation. Here we solve the structure of the immature retroviral Gag shell from Mason-Pfizer monkey virus by combining cryo-electron microscopy and tomography. The 8-angstrom resolution structure permits the derivation of a pseudo-atomic model of CA in the immature retrovirus, which defines the protein interfaces mediating retrovirus assembly. We show that transition of an immature retrovirus into its mature infectious form involves marked rotations and translations of CA domains, that the roles of the amino-terminal and carboxy-terminal domains of CA in assembling the immature and mature hexameric lattices are exchanged, and that the CA interactions that stabilize the immature and mature viruses are almost completely distinct.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot pressed B13C2 sample shows a high density of variable width twins normal to (10-11). Subtle shifts or offsets of lattice fringes along the twin plane and normal to (10 5) were also observed. A B4C powder showed little evidence of stacking disorder in crystalline regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Articular cartilage is a complex structure with an architecture in which fluid-swollen proteoglycans constrained within a 3D network of collagen fibrils. Because of the complexity of the cartilage structure, the relationship between its mechanical behaviours at the macroscale level and its components at the micro-scale level are not completely understood. The research objective in this thesis is to create a new model of articular cartilage that can be used to simulate and obtain insight into the micro-macro-interaction and mechanisms underlying its mechanical responses during physiological function. The new model of articular cartilage has two characteristics, namely: i) not use fibre-reinforced composite material idealization ii) Provide a framework for that it does probing the micro mechanism of the fluid-solid interaction underlying the deformation of articular cartilage using simple rules of repartition instead of constitutive / physical laws and intuitive curve-fitting. Even though there are various microstructural and mechanical behaviours that can be studied, the scope of this thesis is limited to osmotic pressure formation and distribution and their influence on cartilage fluid diffusion and percolation, which in turn governs the deformation of the compression-loaded tissue. The study can be divided into two stages. In the first stage, the distributions and concentrations of proteoglycans, collagen and water were investigated using histological protocols. Based on this, the structure of cartilage was conceptualised as microscopic osmotic units that consist of these constituents that were distributed according to histological results. These units were repeated three-dimensionally to form the structural model of articular cartilage. In the second stage, cellular automata were incorporated into the resulting matrix (lattice) to simulate the osmotic pressure of the fluid and the movement of water within and out of the matrix; following the osmotic pressure gradient in accordance with the chosen rule of repartition of the pressure. The outcome of this study is the new model of articular cartilage that can be used to simulate and study the micromechanical behaviours of cartilage under different conditions of health and loading. These behaviours are illuminated at the microscale level using the socalled neighbourhood rules developed in the thesis in accordance with the typical requirements of cellular automata modelling. Using these rules and relevant Boundary Conditions to simulate pressure distribution and related fluid motion produced significant results that provided the following insight into the relationships between osmotic pressure gradient and associated fluid micromovement, and the deformation of the matrix. For example, it could be concluded that: 1. It is possible to model articular cartilage with the agent-based model of cellular automata and the Margolus neighbourhood rule. 2. The concept of 3D inter connected osmotic units is a viable structural model for the extracellular matrix of articular cartilage. 3. Different rules of osmotic pressure advection lead to different patterns of deformation in the cartilage matrix, enabling an insight into how this micromechanism influences macromechanical deformation. 4. When features such as transition coefficient were changed, permeability (representing change) is altered due to the change in concentrations of collagen, proteoglycans (i.e. degenerative conditions), the deformation process is impacted. 5. The boundary conditions also influence the relationship between osmotic pressure gradient and fluid movement at the micro-scale level. The outcomes are important to cartilage research since we can use these to study the microscale damage in the cartilage matrix. From this, we are able to monitor related diseases and their progression leading to potential insight into drug-cartilage interaction for treatment. This innovative model is an incremental progress on attempts at creating further computational modelling approaches to cartilage research and other fluid-saturated tissues and material systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Goethite and Al-substituted goethite were synthesized from the reaction between ferric nitrate and/or aluminum nitrate and potassium hydroxide. XRF, XRD, TEM with EDS were used to characterize the chemical composition, phase and lattice parameters, and morphology of the synthesized products. The results show that d(020) decreases from 4.953 to 4.949 Å and the b dimension decreases from 9.951 Å to 9.906 Å when the aging time increases from 6 days to 42 days for 9.09 mol% Al-substituted goethite. A sample with 9.09 mol% Al substitution in Al-substituted goethite was prepared by a rapid co-precipitation method. In the sample, 13.45 mol%, 12.31 mol% and 5.85 mol% Al substitution with a crystal size of 163, 131, and 45 nm are observed as shown in the TEM images and EDS. The crystal size of goethite is positively related to the degree of Al substitution according to the TEM images and EDS results. Thus, this methodology is proved to be effective to distinguish the morphology of goethite and Al substituted goethite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pyrite and chalcopyrite mineral samples from Mangampet barite mine, Kadapa, Andhra Pradesh, India are used in the present study. XRD data indicate that the pyrite mineral has a face centered cubic lattice structure with lattice constant 5.4179 Å. Also it possesses an average particle size of 91.9 nm. An EPR study on the powdered samples confirms the presence of iron in pyrite and iron and Mn(II) in chalcopyrite. The optical absorption spectrum of chalcopyrite indicates presence of copper which is in a distorted octahedral environment. NIR results confirm the presence of water fundamentals and Raman spectrum reveals the presence of water and sulfate ions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cerium ions (Ce3+) can beselectively doped into the TiO2(B) core of TiO2(B)/anatase core–shell nanofibers by means of a simple one-pot hydrothermal treatment of a starting material of hydrogen trititanate (H2Ti3O7) nanofibers. These Ce3+ ions (≈0.202 nm) are located on the (110) lattice planes of the TiO2(B) core in tunnels (width≈0.297 nm). The introduction of Ce3+ ions reduces the defects of the TiO2(B) core by inhibiting the faster growth of (110) lattice planes. More importantly, the redox potential of the Ce3+/Ce4+ couple (E0(Ce3+/Ce4+)=1.715 V versus the normal hydrogen electrode) is more negative than the valence band of TiO2(B). Therefore, once the Ce3+-doped nanofibers are irradiated by UV light, the doped Ce3+ ions in close vicinity to the interface between the TiO2(B) core and anatase nanoshell can efficiently trap the photogenerated holes. This facilitates the migration of holes from the anatase shell and leaves more photogenerated electrons in the anatase nanoshell, which results in a highly efficient separation of photogenerated charges in the anatase nanoshell. Hence, this enhanced charge-separation mechanism accelerates dye degradation and alcohol oxidation processes. The one-pot treatment doping strategy is also used to selectively dope other metal ions with variable oxidation states such as Co2+/3+ and Cu+/2+ ions. The doping substantially improves the photocatalytic activity of the mixed-phase nanofibers. In contrast, the doping of ions with an invariable oxidation state, such as Zn2+, Ca2+, or Mg2+, does not enhance the photoactivity of the mixed-phase nanofibers as the ions could not trap the photogenerated holes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cu/Ni/W nanolayered composites with individual layer thickness ranging from 5nm to 300nm were prepared by a magnetron sputtering system. Microstructures and strength of the nanolayered composites were investigated by using the nanoindentation method combined with theoretical analysis. Microstructure characterization revealed that the Cu/Ni/W composite consists of a typical Cu/Ni coherent interface and Cu/W and Ni/W incoherent interfaces. Cu/Ni/W composites have an ultrahigh strength and a large strengthening ability compared with bi-constituent Cu–X(X¼Ni, W, Au, Ag, Cr, Nb, etc.) nanolayered composites. Summarizing the present results and those reported in the literature, we systematically analyze the origin of the ultrahigh strength and its length scale dependence by taking into account the constituent layer properties, layer scales and heterogeneous layer/layer interface characteristics, including lattice and modulus mismatch as well as interface structure.