848 resultados para ionic and nonionic micelles
Resumo:
Micelle-forming bile salts have previously been shown to be effective pseudo-stationary phases for separating the chiral isomers of binaphthyl compounds with micellar electrokinetic capillary chromatography (MEKC). Here, cholate micelles are systematically investigated via electrophoretic separations and NMR using R, S-1, 1¿- binaphthyl- 2, 2¿-diylhydrogenphosphate (BNDHP) as a model chiral analyte. The pH, temperature, and concentration of BNDHP were systematically varied while monitoring the chiral resolution obtained with MEKC and the chemical shift of various protons in NMR. NMR data for each proton on BNDHP is monitored as a function of cholate concentration: as cholate monomers begin to aggregate and the analyte molecules begin to sample the micelle aggregate we observe changes in the cholate methyl and S-BNDHP proton chemical shifts. From such NMR data, the apparent CMC of cholate at pH 12 is found to be about 13-14 mM, but this value decreases at higher pH, suggesting that more extreme pHs may give rise to more effective separations. In general, CMCs increase with temperature indicating that one may be able to obtain better separations at lower temperatures. S-BNDHP concentrations ranging from 50 ¿M to 400 ¿M (pH 12.8) gave rise to apparent cholate CMC values from 10 mM to 8 mM, respectively, indicating that S-BNDHP, the chiral analyte molecule, may play an active role in stabilizing cholate aggregates. In all, these data show that NMR can be used to systematically investigate a complex multi-variable landscape of potential optimizations of chiral separations.
Resumo:
The dynamics of focusing weak bases using a transient pH boundary was examined via high-resolution computer simulation software. Emphasis was placed on the mechanism and impact that the presence of salt, namely, NaCl, has on the ability to focus weak bases. A series of weak bases with mobilities ranging from 5 x 10(-9) to 30 x 10(-9) m2/V x s and pKa values between 3.0 and 7.5 were examined using a combination of 65.6 mM formic acid, pH 2.85, for the separation electrolyte, and 65.6 mM formic acid, pH 8.60, for the sample matrix. Simulation data show that it is possible to focus weak bases with a pKa value similar to that of the separation electrolyte, but it is restricted to weak bases having an electrophoretic mobility of 20 x 10(-9) m2/V x s or quicker. This mobility range can be extended by the addition of NaCl, with 50 mM NaCl allowing stacking of weak bases down to a mobility of 15 x 10(-9) m2/V x s and 100 mM extending the range to 10 x 10(-9) m2/V x s. The addition of NaCl does not adversely influence focusing of more mobile bases, but does prolong the existence of the transient pH boundary. This allows analytes to migrate extensively through the capillary as a single focused band around the transient pH boundary until the boundary is dissipated. This reduces the length of capillary that is available for separation and, in extreme cases, causes multiple analytes to be detected as a single highly efficient peak.
Resumo:
PURPOSE: To compare the effects on heart rate (HR), on left ventricular (LV) or arterial pressures, and the general safety of a non-ionic low-osmolar contrast medium (CM) and a non-ionic iso-osmolar CM in patients undergoing cardiac angiography (CA) or peripheral intra-arterial digital subtraction angiography (IA-DSA). MATERIALS AND METHODS: Two double-blind, randomized studies were conducted in 216 patients who underwent CA (n=120) or peripheral IA-DSA (n=96). Patients referred for CA received a low-osmolar monomeric CM (iomeprol-350, n=60) or an iso-osmolar dimeric CM (iodixanol-320; n=60). HR and LV peak systolic and end-diastolic pressures were determined before and after the first injection during left and right coronary arteriography and left ventriculography. Monitoring for all types of adverse event (AE) was performed for 24 h following the procedure. t-tests were performed to compare CM for effects on HR. Patients referred for IA-DSA received iomeprol-300 (n=49) or iodixanol-320 (n=47). HR and arterial blood pressure (BP) were evaluated before and after the first 4 injections. Monitoring for AE was performed for 4 h following the procedure. Repeated-measures ANOVA was used to compare mean HR changes across the first 4 injections, whereas changes after the first injection were compared using t-tests. RESULTS: No significant differences were noted between iomeprol and iodixanol in terms of mean changes in HR during left coronary arteriography (p=0.8), right coronary arteriography (p=0.9), and left ventriculography (p=0.8). In patients undergoing IA-DSA, no differences between CM were noted for effects on mean HR after the first injection (p=0.6) or across the first 4 injections (p=0.2). No significant differences (p>0.05) were noted in terms of effects on arterial BP in either study or on LV pressures in patients undergoing CA. Non-serious AE considered possibly CM-related (primarily headache and events affecting the cardiovascular and digestive systems) were reported more frequently by patients undergoing CA and more frequently after iodixanol (14/60 [23.3%] and 2/47 [4.3%]; CA and IA-DSA, respectively) than iomeprol (10/60 [16.7%] and 1/49 [2%], respectively). CONCLUSIONS: Iomeprol and iodixanol are safe and have equally negligible effects on HR and LV pressures or arterial BP during and after selective intra-cardiac injection and peripheral IA-DSA. CLINICAL APPLICATION: Iomeprol and iodixanol are safe and equally well tolerated with regard to cardiac rhythm and clinical preference should be based on diagnostic image quality alone.
Resumo:
The most important early pathomechanism in traumatic brain injury (TBI) is alteration of the resting membrane potential. This may be mediated via voltage, or agonist-dependent ion channels (e.g. glutamate-dependent channels). This may result in a consequent increase in metabolism with increased oxygen consumption, in order to try to restore ionic balance via the ATP-dependent pumps. We hypothesize that glutamate is an important agonist in this process and may induce an increase in lactate, potassium and brain tissue CO2, and hence a decrease in brain pH. Further we propose that an increase in lactate is thus not an indicator of anaerobic metabolic conditions as has been thought for many years. We therefore analyzed a total of 85 patients with TBI, Glasgow Coma Scale (GCS) < 8 using microdialysis, brain tissue oxygen, CO2 and pH monitoring. Cerebral blood flow studies (CBF) were performed to test the relationship between regional cerebral blood flow (rCBF) and the metabolic determinants. Glutamate was significantly correlated with lactate (p < 0.0001), potassium (p < 0.0001), brain tissue pH (p = 0.0005), and brain tissue CO2 (p = 0.006). rCBF was inversely correlated with glutamate, lactate and potassium. 44% of high lactate values were observed in brain with tissue oxygen values, above the threshold level for cell damage. These results support the hypothesis of a glutamate driven increase in metabolism, with secondary traumatic depolarization and possibly hyperglycolysis. Further, we demonstrate evidence for lactate production in aerobic conditions in humans after TBI. Finally, when reduced regional cerebral blood flow (rCBF) is observed, high dialysate glutamate, lactate and potassium values are usually seen, suggesting ischemia worsens these TBI-induced changes.
Resumo:
The research reported in this dissertation investigates the impact of grain boundaries, film interface, and crystallographic orientation on the ionic conductivity of thin film Gd-doped CeO2 (GDC). Chapter 2 of this work addresses claims in the literature that submicron grain boundaries have the potential to dramatically increase the ionic conductivity of GDC films. Unambiguous testing of this claim requires directly comparing the ionic conductivity of single-crystal GDC films to films that are identical except for the presence of submicron grain boundaries. In this work techniques have been developed to grow GDC films by RF magnetron sputtering from a GDC target on single crystal r plane sapphire substrates. These techniques allow the growth of films that are single crystals or polycrystalline with 80 nm diameter grains. The ionic conductivities of these films have been measured and the data shows that the ionic conductivity of single crystal GDC is greater than that of the polycrystalline films by more than a factor of 4 over the 400-700°C temperature range. Chapter 3 of this work investigates the ionic conductivity of surface and interface regions of thin film Gd-doped CeO2. In this study, single crystal GDC films have been grown to thicknesses varying from 20 to 500 nm and their conductivities have been measured in the 500-700°C temperature range. Decreasing conductivity with decreasing film thickness was observed. Analysis of the conductivity data is consistent with the presence of an approximately 50 nm layer of less conductive material in every film. This study concludes that the surface and interface regions of thin film GDC are less conductive than the bulk single crystal regions, rather than being highly conductive paths. Chapter 4 of this work investigates the ionic conductivity of thin film Gd-doped CeO2 (GDC) as a function of crystallographic orientation. A theoretical expression has been developed for the ionic conductivity of the [100] and [110] directions in single crystal GDC. This relationship is compared to experimental data collected from a single crystal GDC film. The film was grown to a thickness of _300 nm and its conductivity measured along the [100] and [110] orientations in the 500-700°C temperature range. The experimental data shows no statistically significant difference in the conductivities of the [100] and [110] directions in single crystal GDC. This result agrees with the theoretical model which predicts no difference between the conductivities of the two directions.
Resumo:
An electrospray source has been developed using a novel new fluid that is both magnetic and conductive. Unlike conventional electrospray sources that required microfabricated structures to support the fluid to be electrosprayed, this new electrospray fluid utilizes the Rosensweig instability to create the structures in the magnetic fluid when an external magnetic field was applied. Application of an external electric field caused these magnetic fluid structures to spray. These fluid based structures were found to spray at a lower onset voltage than was predicted for electrospray sources with solid structures of similar geometry. These fluid based structures were also found to be resilient to damage, unlike the solid structures found in traditional electrospray sources. Further, experimental studies of magnetic fluids in non-uniform magnetic fields were conducted. The modes of Rosensweig instabilities have been studied in-depth when created by uniform magnetic fields, but little to no studies have been performed on Rosensweig instabilities formed due to non-uniform magnetic fields. The measured spacing of the cone-like structures of ferrofluid, in a non-uniform magnetic field, were found to agree with a proposed theoretical model.
Resumo:
Gene-directed enzyme prodrug therapy is a form of cancer therapy in which delivery of a gene that encodes an enzyme is able to convert a prodrug, a pharmacologically inactive molecule, into a potent cytotoxin. Currently delivery of gene and prodrug is a two-step process. Here, we propose a one-step method using polymer nanocarriers to deliver prodrug, gene and cytotoxic drug simultaneously to malignant cells. Prodrugs acyclovir, ganciclovir and 5-doxifluridine were used to directly to initiate ring-opening polymerization of epsilon-caprolactone, forming a hydrophobic prodrug-tagged poly(epsilon-caprolactone) which was further grafted with hydrophilic polymers (methoxy poly(ethylene glycol), chitosan or polyethylenemine) to form amphiphilic copolymers for micelle formation. Successful synthesis of copolymers and micelle formation was confirmed by standard analytical means. Conversion of prodrugs to their cytotoxic forms was analyzed by both two-step and one-step means i.e. by first delivering gene plasmid into cell line HT29 and then challenging the cells with the prodrug-tagged micelle carriers and secondly by complexing gene plasmid onto micelle nanocarriers and delivery gene and prodrug simultaneously to parental HT29 cells. Anticancer effectiveness of prodrug-tagged micelles was further enhanced by encapsulating chemotherapy drugs doxorubicin or SN-38. Viability of colon cancer cell line HT29 was significantly reduced. Furthermore, in an effort to develop a stealth and targeted carrier, CD47-streptavidin fusion protein was attached onto the micelle surface utilizing biotin-streptavidin affinity. CD47, a marker of self on the red blood cell surface, was used for its antiphagocytic efficacy, results showed that micelles bound with CD47 showed antiphagocytic efficacy when exposed to J774A.1 macrophages. Since CD47 is not only an antiphagocytic ligand but also an integrin associated protein, it was used to target integrin alpha(v)beta(3), which is overexpressed on tumor-activated neovascular endothelial cells. Results showed that CD47-tagged micelles had enhanced uptake when treated to PC3 cells which have high expression of alpha(v)beta(3). The synthesized multifunctional polymeric micelle carriers developed could offer a new platform for an innovative cancer therapy regime.
Resumo:
The molecular and ionic composition of vapor over erbium tribromide sublimed from the Knudsen effusion cell and the open surface of a single crystal was studied by high-temperature mass spectrometry. The partial pressures of ErBr3 and Er2Br6 molecules in saturated vapor and the ratio between their sublimation coefficients under free vaporization conditions were determined. The enthalpies and activation energies of sublimation of ErBr3 crystals in the form of monomers and dimers were calculated. The emission of and Er2 was recorded in studies of ionic sublimation in both modes. The enthalpies of formation of gas molecules and ions were determined.
Resumo:
We present the development of a multifunctional platform equipped with an array of silicon nitride micropipettes with dimensions allowing the implementation of extra- and intracellular operations. Micropipettes with outer diameter that ranges from 6 mum down to 300 nm and with walls thicknesses of 500 down to 150 nm are presented. The generic technology developed to fabricate these micropipettes has a number of advantages, including the ability to be implemented as ion-selective electrodes for (A) intracellular and (B) extracellular recordings and as (C) local drug microdispensers.
Resumo:
Apoptosis, a form of programmed cell death, is critical to homoeostasis, normal development, and physiology. Dysregulation of apoptosis can lead to the accumulation of unwanted cells, such as occurs in cancer, and the removal of needed cells or disorders of normal tissues, such as heart, neurodegenerative, and autoimmune diseases. Noninvasive detection of apoptosis may play an important role in the evaluation of disease states and response to therapeutic intervention for a variety of diseases. It is desirable to have an imaging method to accurately detect and monitor this process in patients. In this study, we developed annexin A5-conjugated polymeric micellar nanoparticles dual-labeled with a near-infrared fluorescence fluorophores (Cy7) and a radioisotope (111In), named as 111In-labeled annexin A5-CCPM. In vitro studies demonstrated that annexin A5-CCPM could strongly and specifically bind to apoptotic cells. In vivo studies showed that apoptotic tissues could be clearly visualized by both single photon emission computed tomography (SPECT) and fluorescence molecular tomography (FMT) after intravenous injection of 111In-labeled Annexin A5-CCPM in 6 different apoptosis models. In contrast, there was little signal in respective healthy tissues. All the biodistribution data confirmed imaging results. Moreover, histological analysis revealed that radioactivity count correlated with fluorescence signal from the nanoparticles, and both signals co-localized with the region of apoptosis. In sum, 111In-labeled annexin A5-CCPM allowed visualization of apoptosis by both nuclear and optical imaging techniques. The complementary information acquired with multiple imaging techniques should be advantageous in improving diagnostics and management of patients.
Resumo:
Oxygen isotopic and soluble ionic measurements made on snow-pit (2 in depth) and firn-core (12.4 m depth samples recovered from the accumulation zone 5100 m) of Inilchek glacier 43degrees N, 79degrees E) provide information on recent (1992-98) climatic and environmental conditions in the central Tien Shan region of central Asia. The combined 14.4 m snow-pit/firn-core profile lies within the firn zone, arid contains only one observed melt feature (10 m temperature = - 12 degreesC), Although some post-depositional attenuation of the sub-seasonal delta(18)O record is possible, annual cycles are apparent throughout the isotope profile. We therefore use the preserved delta(18)O record to establish a depth/age scale for the core. Mean delta(18)O values for the entire core and for summer periods are consistent with delta(18)O/temperature observations, and suggest the delta(18)O record provides a means to reconstruct past changes in summer surface temperature at the site. Major-ion (Na(+), K(+), Mg(2+), Ca(2+), NH(4)(+), Cl(-), NO(3)(-), SO(4)(2-)) data from the core demonstrate the dominant influence of dust deposition on the soluble chemistry at the site, arid indicate significant interannual variability in atmospheric-dust loading during the 1900s. Anthropogenic impacts oil NH(4)(+) concentrations are observed at the site, and suggest a summer increase in atmospheric NH(4)(+) that may be related to regional agricultural (nitrogen-rich fertilizer use activities.