937 resultados para input-output
Resumo:
Age-related changes in the adult language addressed to children aged 2;0-4;0 years in polyadic conditions were investigated in Australian childcare centres. The language that 21 staff members addressed to these children was coded for multiple variables in the broad social categories of prosody, context, speech act and gesture. The linguistic components were coded within the categories of phonology, lexicon, morphology, syntax and referential deixis. Minimal age-related differences were found. Explanations for the similarity of the adult language input across the age groups within the early childhood educational environment, will be discussed
Resumo:
The XSophe-Sophe-XeprView((R)) computer simulation software suite enables scientists to easily determine spin Hamiltonian parameters from isotropic, randomly oriented and single crystal continuous wave electron paramagnetic resonance (CW EPR) spectra from radicals and isolated paramagnetic metal ion centers or clusters found in metalloproteins, chemical systems and materials science. XSophe provides an X-windows graphical user interface to the Sophe programme and allows: creation of multiple input files, local and remote execution of Sophe, the display of sophelog (output from Sophe) and input parameters/files. Sophe is a sophisticated computer simulation software programme employing a number of innovative technologies including; the Sydney OPera HousE (SOPHE) partition and interpolation schemes, a field segmentation algorithm, the mosaic misorientation linewidth model, parallelization and spectral optimisation. In conjunction with the SOPHE partition scheme and the field segmentation algorithm, the SOPHE interpolation scheme and the mosaic misorientation linewidth model greatly increase the speed of simulations for most spin systems. Employing brute force matrix diagonalization in the simulation of an EPR spectrum from a high spin Cr(III) complex with the spin Hamiltonian parameters g(e) = 2.00, D = 0.10 cm(-1), E/D = 0.25, A(x) = 120.0, A(y) = 120.0, A(z) = 240.0 x 10(-4) cm(-1) requires a SOPHE grid size of N = 400 (to produce a good signal to noise ratio) and takes 229.47 s. In contrast the use of either the SOPHE interpolation scheme or the mosaic misorientation linewidth model requires a SOPHE grid size of only N = 18 and takes 44.08 and 0.79 s, respectively. Results from Sophe are transferred via the Common Object Request Broker Architecture (CORBA) to XSophe and subsequently to XeprView((R)) where the simulated CW EPR spectra (1D and 2D) can be compared to the experimental spectra. Energy level diagrams, transition roadmaps and transition surfaces aid the interpretation of complicated randomly oriented CW EPR spectra and can be viewed with a web browser and an OpenInventor scene graph viewer.
Resumo:
This paper presents a theoretical model of flow and chemical transport processes in subterranean estuaries (unconfined brackish groundwater aquifers at the ocean-land interface). The model shows that groundwater circulation and oscillating flow, caused by wave setup and tide, may constitute up to 96% of submarine groundwater discharge (SGWD) compared with 4% due to the net groundwater discharge. While these local flow processes do not change the total amount of land-derived chemical input to the ocean over a long period (e.g., yearly), they induce fluctuations of the chemical transfer rate as the aquifer undergoes saltwater intrusion. This may result in a substantial increase in chemical fluxes to the ocean over a short period (e.g., monthly and by a factor of 20 above the averaged level), imposing a possible threat to the marine environment. These results are essentially consistent with the experimental findings of Moore [1996] and have important implications for coastal resources management.
Resumo:
This study examined the effects of four high-intensity interval-training (HIT) sessions performed over 2 weeks on peak volume of oxygen uptake (VO2peak), the first and second ventilatory thresholds (UT VT2) and peak power output (PPO) in highly trained cyclists. Fourteen highly trained male cyclists (VO2peak = 67.5 +/- 3.7 ml . kg(-1) . min(-1)) performed a ramped cycle test to determine VO2peak VT1 VT2, and PPO. Subjects were divided equally into a HIT group and a control group. The HIT group performed four HIT sessions (20 x 60 s at PPO, 120 s recovery); the V-02peak test was repeated <I wk after the HIT program. Control subjects maintained their regular training program and were reassessed under the same timeline. There was no change in V0(2peak) for either group; however, the HIT group showed a significantly greater increase in VT1, (+22% vs. -3%), VT2 (+15% vs. -1%), and PPO (+4.3 vs. -.4%) compared to controls (all P <.05). This study has demonstrated that HIT can improve VT1, VT2,, and PPO, following only four HIT sessions in already highly trained cyclists.
Resumo:
Quantifying mass and energy exchanges within tropical forests is essential for understanding their role in the global carbon budget and how they will respond to perturbations in climate. This study reviews ecosystem process models designed to predict the growth and productivity of temperate and tropical forest ecosystems. Temperate forest models were included because of the minimal number of tropical forest models. The review provides a multiscale assessment enabling potential users to select a model suited to the scale and type of information they require in tropical forests. Process models are reviewed in relation to their input and output parameters, minimum spatial and temporal units of operation, maximum spatial extent and time period of application for each organization level of modelling. Organizational levels included leaf-tree, plot-stand, regional and ecosystem levels, with model complexity decreasing as the time-step and spatial extent of model operation increases. All ecosystem models are simplified versions of reality and are typically aspatial. Remotely sensed data sets and derived products may be used to initialize, drive and validate ecosystem process models. At the simplest level, remotely sensed data are used to delimit location, extent and changes over time of vegetation communities. At a more advanced level, remotely sensed data products have been used to estimate key structural and biophysical properties associated with ecosystem processes in tropical and temperate forests. Combining ecological models and image data enables the development of carbon accounting systems that will contribute to understanding greenhouse gas budgets at biome and global scales.
Resumo:
The family Alpheidae, composed by shrimps of relatively small size, popularly known as snapping shrimps, is the one of the most diverse decapod groups. These shrimps are found worldwide and Occur in tropical and subtropical waters, from the intertidal zone to great depths. We investigated reproductive aspects of Alpheus armillatus, in order to gather information on egg production, aiming to enhance knowledge of its reproductive strategies in a population in an intertidal area of the South Atlantic. Ovigerous females were collected under rocks, in May and July 2006 (dry season) and in November 2006 and March 2007 (rainy season). Egg production and reproductive output were analyzed and compared seasonally and during the period of embryonic development. Females measured on average 11.28 mm CL with a mean of 763 eggs and 0.11 mm(3) egg volume. The egg volume of this population was smaller than previous estimates for other species of snapping shrimps, but the mean egg number was higher. The volume of eggs doubled during the incubation period, but despite this increase, no significant loss of eggs was observed. Alpheus armillatus invests oil average about 12% of body weight in reproduction. The proportional investment in egg production IS Significantly higher in the rainy season when compared with the dry season (17.9% vs 4.8%), correlated with higher temperatures and increased food availability at this time. Our results corroborated the hypothesis of a pattern of egg production influenced by environmental conditions and intraspecific variability among the family Alpheidae, as a function of the biogeographic region.
Resumo:
Independent studies have shown that the median raphe nucleus (MRN) and dorsal hippocampus (DH) are involved in the expression of contextual conditioned fear (CFC). However, studies that examine the integrated involvement of serotonergic mechanisms of the MRN-DH are lacking. To address this issue, a CFC paradigm was used to test whether the serotonergic projections from the MRN to DH can influence CFC. Serotoninergic drugs were infused either into the MRN or DH prior to testing sessions in which freezing and startle responses were measured in the same context where 6 h previously rats received footshocks. A reduction of serotonin (5-HT) transmission in the MRN by local infusions of the 5-HT(1A) agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) decreased freezing in response to the context but did not reduce fear-potentiated startle. This pattern of results is consistent with the hypothesis that MRN serotonergic mechanisms selectively modulate the freezing response to the aversive context. As for the DH, a decrease in postsynaptic 5-HT receptor activity at projection areas has been proposed to be the main consequence of 5-HT(1A) receptor activation in the MIRN. Intra-DH injections of 8-OH-DPAT inhibited both the freezing and fear-potentiated startle response to the context. To reconcile these findings, an inhibitory mechanism may exist between the incoming 5-HT pathway from the MRN to DH and the neurons of the DH output to other structures. The DH-amygdala or medial prefrontal cortex projections could well be this output circuit modulating the expression of CFC as revealed by measurements of Fos immunoreactivity in these areas. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We calculate the stationary state of the system of two non-identical two-level atoms driven by a finite-bandwidth two-mode squeezed vacuum. It is well known that two identical two-level atoms driven by a broadband squeezed vacuum may decay to a pure state, called the pure two-atom squeezed state, and that the presence of the antisymmetric state can change its purity. Here, we show that for small interatomic separations the stationary state of two non-identical atoms is not sensitive to the presence of the antisymmetric state and is the pure two-atom squeezed state. This effect is a consequence of the fact that in the system of two non-identical atoms the antisymmetric state is no longer the trapping state. We also calculate the squeezing properties of the emitted field and find that the squeezing spectrum of the output field may exhibit larger squeezing than that in the input squeezed vacuum. Moreover, we show that squeezing in the total field attains the optimum value which can ever be achieved in the field emitted by two atoms.
Resumo:
Bliacheriene F, Carmona MJC, Barretti CFM, Haddad CMF, Mouchalwat ES, Bortlotto MRFL, Francisco RPV, Zugaib M - Use of a Minimally Invasive Uncalibrated Cardiac Output Monitor in Patients Undergoing Cesarean Section under Spinal Anesthesia: Report of Four Cases. Background and Objectives: Hemodynamic changes are observed during cesarean section under spinal anesthesia. Non-invasive blood pressure (BP) and heart rate (HR) measurements are performed to diagnose these changes, but they are delayed and inaccurate. Other monitors such as filling pressure and cardiac output (CO) catheters with external calibration are very invasive or inaccurate. The objective of the present study was to report the cardiac output measurements obtained with a minimally invasive uncalibrated monitor (LiDCO rapid) in patients undergoing cesarean section under spinal anesthesia. Case report: After approval by the Ethics Commission, four patients agreed to participate in this study. They underwent cesarean section under spinal anesthesia while at the same time being connected to the LiDCO rapid by a radial artery line. Cardiac output, HR, and BP were recorded at baseline, after spinal anesthesia, after fetal and placental extraction, and after the infusion of oxytocin and metaraminol. We observed a fall in BP with an increase of HR and CO after spinal anesthesia and oxytocin infusion; and an increase in BP with a fall in HR and CO after bolus of the vasopressor. Conclusions: Although this monitor had not been calibrated, it showed a tendency for consistent hemodynamic data in obstetric patients and it may be used as a therapeutic guide or experimental tool.
Resumo:
The squeezing properties of the fluorescence field emitted by a two-level atom driven by a coherent laser field in a squeezed vacuum are calculated. We show that in the region of the anomalous resonance fluorescence the emitted field exhibits squeezing that is much larger than that in the input squeezed vacuum. The squeezing spectrum attains a minimum value that corresponds to 75% squeezing. We also find that, in the total fluorescence field, squeezing attains an optimum achievable value in the fluorescence field emitted by a two-level atom. The optimum squeezing is associated with the collapse of the system into a pure state. (C) 1997 Optical Society of America.
Resumo:
Quantum information theory, applied to optical interferometry, yields a 1/n scaling of phase uncertainty Delta phi independent of the applied phase shift phi, where n is the number of photons in the interferometer. This 1/n scaling is achieved provided that the output state is subjected to an optimal phase measurement. We establish this scaling law for both passive (linear) and active (nonlinear) interferometers and identify the coefficient of proportionality. Whereas a highly nonclassical state is required to achieve optimal scaling for passive interferometry, a classical input state yields a 1/n scaling of phase uncertainty for active interferometry.
Resumo:
Fuzzy Bayesian tests were performed to evaluate whether the mother`s seroprevalence and children`s seroconversion to measles vaccine could be considered as ""high"" or ""low"". The results of the tests were aggregated into a fuzzy rule-based model structure, which would allow an expert to influence the model results. The linguistic model was developed considering four input variables. As the model output, we obtain the recommended age-specific vaccine coverage. The inputs of the fuzzy rules are fuzzy sets and the outputs are constant functions, performing the simplest Takagi-Sugeno-Kang model. This fuzzy approach is compared to a classical one, where the classical Bayes test was performed. Although the fuzzy and classical performances were similar, the fuzzy approach was more detailed and revealed important differences. In addition to taking into account subjective information in the form of fuzzy hypotheses it can be intuitively grasped by the decision maker. Finally, we show that the Bayesian test of fuzzy hypotheses is an interesting approach from the theoretical point of view, in the sense that it combines two complementary areas of investigation, normally seen as competitive. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved.