822 resultados para information security, management, culture
Resumo:
This paper proposes a new method of using foreground silhouette images for human pose estimation. Labels are introduced to the silhouette images, providing an extra layer of information that can be used in the model fitting process. The pixels in the silhouettes are labelled according to the corresponding body part in the model of the current fit, with the labels propagated into the silhouette of the next frame to be used in the fitting for the next frame. Both single and multi-view implementations are detailed, with results showing performance improvements over only using standard unlabelled silhouettes.
Resumo:
Games and related virtual environments have been a much-hyped area of the entertainment industry. The classic quote is that games are now approaching the size of Hollywood box office sales [1]. Books are now appearing that talk up the influence of games on business [2], and it is one of the key drivers of present hardware development. Some of this 3D technology is now embedded right down at the operating system level via the Windows Presentation Foundations – hit Windows/Tab on your Vista box to find out... In addition to this continued growth in the area of games, there are a number of factors that impact its development in the business community. Firstly, the average age of gamers is approaching the mid thirties. Therefore, a number of people who are in management positions in large enterprises are experienced in using 3D entertainment environments. Secondly, due to the pressure of demand for more computational power in both CPU and Graphical Processing Units (GPUs), your average desktop, any decent laptop, can run a game or virtual environment. In fact, the demonstrations at the end of this paper were developed at the Queensland University of Technology (QUT) on a standard Software Operating Environment, with an Intel Dual Core CPU and basic Intel graphics option. What this means is that the potential exists for the easy uptake of such technology due to 1. a broad range of workers being regularly exposed to 3D virtual environment software via games; 2. present desktop computing power now strong enough to potentially roll out a virtual environment solution across an entire enterprise. We believe such visual simulation environments can have a great impact in the area of business process modeling. Accordingly, in this article we will outline the communication capabilities of such environments, giving fantastic possibilities for business process modeling applications, where enterprises need to create, manage, and improve their business processes, and then communicate their processes to stakeholders, both process and non-process cognizant. The article then concludes with a demonstration of the work we are doing in this area at QUT.
Resumo:
Secondary tasks such as cell phone calls or interaction with automated speech dialog systems (SDSs) increase the driver’s cognitive load as well as the probability of driving errors. This study analyzes speech production variations due to cognitive load and emotional state of drivers in real driving conditions. Speech samples were acquired from 24 female and 17 male subjects (approximately 8.5 h of data) while talking to a co-driver and communicating with two automated call centers, with emotional states (neutral, negative) and the number of necessary SDS query repetitions also labeled. A consistent shift in a number of speech production parameters (pitch, first format center frequency, spectral center of gravity, spectral energy spread, and duration of voiced segments) was observed when comparing SDS interaction against co-driver interaction; further increases were observed when considering negative emotion segments and the number of requested SDS query repetitions. A mel frequency cepstral coefficient based Gaussian mixture classifier trained on 10 male and 10 female sessions provided 91% accuracy in the open test set task of distinguishing co-driver interactions from SDS interactions, suggesting—together with the acoustic analysis—that it is possible to monitor the level of driver distraction directly from their speech.
Resumo:
This paper discusses the use of models in automatic computer forensic analysis, and proposes and elaborates on a novel model for use in computer profiling, the computer profiling object model. The computer profiling object model is an information model which models a computer as objects with various attributes and inter-relationships. These together provide the information necessary for a human investigator or an automated reasoning engine to make judgements as to the probable usage and evidentiary value of a computer system. The computer profiling object model can be implemented so as to support automated analysis to provide an investigator with the information needed to decide whether manual analysis is required.
Resumo:
This paper proposes a clustered approach for blind beamfoming from ad-hoc microphone arrays. In such arrangements, microphone placement is arbitrary and the speaker may be close to one, all or a subset of microphones at a given time. Practical issues with such a configuration mean that some microphones might be better discarded due to poor input signal to noise ratio (SNR) or undesirable spatial aliasing effects from large inter-element spacings when beamforming. Large inter-microphone spacings may also lead to inaccuracies in delay estimation during blind beamforming. In such situations, using a cluster of microphones (ie, a sub-array), closely located both to each other and to the desired speech source, may provide more robust enhancement than the full array. This paper proposes a method for blind clustering of microphones based on the magnitude square coherence function, and evaluates the method on a database recorded using various ad-hoc microphone arrangements.
Resumo:
Identifying an individual from surveillance video is a difficult, time consuming and labour intensive process. The proposed system aims to streamline this process by filtering out unwanted scenes and enhancing an individual's face through super-resolution. An automatic face recognition system is then used to identify the subject or present the human operator with likely matches from a database. A person tracker is used to speed up the subject detection and super-resolution process by tracking moving subjects and cropping a region of interest around the subject's face to reduce the number and size of the image frames to be super-resolved respectively. In this paper, experiments have been conducted to demonstrate how the optical flow super-resolution method used improves surveillance imagery for visual inspection as well as automatic face recognition on an Eigenface and Elastic Bunch Graph Matching system. The optical flow based method has also been benchmarked against the ``hallucination'' algorithm, interpolation methods and the original low-resolution images. Results show that both super-resolution algorithms improved recognition rates significantly. Although the hallucination method resulted in slightly higher recognition rates, the optical flow method produced less artifacts and more visually correct images suitable for human consumption.
Resumo:
Monitoring Internet traffic is critical in order to acquire a good understanding of threats to computer and network security and in designing efficient computer security systems. Researchers and network administrators have applied several approaches to monitoring traffic for malicious content. These techniques include monitoring network components, aggregating IDS alerts, and monitoring unused IP address spaces. Another method for monitoring and analyzing malicious traffic, which has been widely tried and accepted, is the use of honeypots. Honeypots are very valuable security resources for gathering artefacts associated with a variety of Internet attack activities. As honeypots run no production services, any contact with them is considered potentially malicious or suspicious by definition. This unique characteristic of the honeypot reduces the amount of collected traffic and makes it a more valuable source of information than other existing techniques. Currently, there is insufficient research in the honeypot data analysis field. To date, most of the work on honeypots has been devoted to the design of new honeypots or optimizing the current ones. Approaches for analyzing data collected from honeypots, especially low-interaction honeypots, are presently immature, while analysis techniques are manual and focus mainly on identifying existing attacks. This research addresses the need for developing more advanced techniques for analyzing Internet traffic data collected from low-interaction honeypots. We believe that characterizing honeypot traffic will improve the security of networks and, if the honeypot data is handled in time, give early signs of new vulnerabilities or breakouts of new automated malicious codes, such as worms. The outcomes of this research include: • Identification of repeated use of attack tools and attack processes through grouping activities that exhibit similar packet inter-arrival time distributions using the cliquing algorithm; • Application of principal component analysis to detect the structure of attackers’ activities present in low-interaction honeypots and to visualize attackers’ behaviors; • Detection of new attacks in low-interaction honeypot traffic through the use of the principal component’s residual space and the square prediction error statistic; • Real-time detection of new attacks using recursive principal component analysis; • A proof of concept implementation for honeypot traffic analysis and real time monitoring.
Resumo:
Recent years have seen an increased uptake of business process management technology in industries. This has resulted in organizations trying to manage large collections of business process models. One of the challenges facing these organizations concerns the retrieval of models from large business process model repositories. For example, in some cases new process models may be derived from existing models, thus finding these models and adapting them may be more effective than developing them from scratch. As process model repositories may be large, query evaluation may be time consuming. Hence, we investigate the use of indexes to speed up this evaluation process. Experiments are conducted to demonstrate that our proposal achieves a significant reduction in query evaluation time.
Resumo:
Individuals, organizations, and governments are increasingly becoming aware of the necessity of sustainability in living, organizing, performing, and managing work. In this context, “green IS” has become an established colloquial term, acknowledging that information technology, corporate information systems, and the surrounding practices are both a contributor to the sustainability challenge and a potential enabler for green and sustainable practices. To date, however, there are few reported studies on the role of information systems for the challenge, and solution, of sustainability. This paper presents results from a case study of a world-wide operating IT software solution provider that is engaged in the development and adoption of sustainable practices. Our study suggests that the adoption of sustainable practices comes along with a number of particularities. We found information technology to be a key enabler of transparency about the progress of sustainability operations. We further found personal, motivator factors as well as organizational factors such as business inclusion, strategy definition, and a dialectic top-management and bottom-up support, to play a role in enabling a company to manage their sustainability. We describe a set of conjectures forthcoming from our case analysis, and detail some implications for further research in this area.
Resumo:
The recently proposed data-driven background dataset refinement technique provides a means of selecting an informative background for support vector machine (SVM)-based speaker verification systems. This paper investigates the characteristics of the impostor examples in such highly-informative background datasets. Data-driven dataset refinement individually evaluates the suitability of candidate impostor examples for the SVM background prior to selecting the highest-ranking examples as a refined background dataset. Further, the characteristics of the refined dataset were analysed to investigate the desired traits of an informative SVM background. The most informative examples of the refined dataset were found to consist of large amounts of active speech and distinctive language characteristics. The data-driven refinement technique was shown to filter the set of candidate impostor examples to produce a more disperse representation of the impostor population in the SVM kernel space, thereby reducing the number of redundant and less-informative examples in the background dataset. Furthermore, data-driven refinement was shown to provide performance gains when applied to the difficult task of refining a small candidate dataset that was mis-matched to the evaluation conditions.
Resumo:
This study assesses the recently proposed data-driven background dataset refinement technique for speaker verification using alternate SVM feature sets to the GMM supervector features for which it was originally designed. The performance improvements brought about in each trialled SVM configuration demonstrate the versatility of background dataset refinement. This work also extends on the originally proposed technique to exploit support vector coefficients as an impostor suitability metric in the data-driven selection process. Using support vector coefficients improved the performance of the refined datasets in the evaluation of unseen data. Further, attempts are made to exploit the differences in impostor example suitability measures from varying features spaces to provide added robustness.
Resumo:
Natural disasters and deliberate, willful damage to telecommunication infrastructure can result in a loss of critical voice and data services. This loss of service hinders the ability for efficient emergency response and can cause delays leading to loss of life. Current mobile devices are generally tied to one network operator. When a disaster is of significant impact, that network operator cannot be relied upon to provide service and coverage levels that would normally exist. While some operators have agreements with other operators to share resources (such as network roaming) these agreements are contractual in nature and cannot be activated quickly in an emergency. This paper introduces Fourth Generation (4G) wireless networks. 4G networks are highly mobile and heterogeneous, which makes 4G networks highly resilient in times of disaster.
Resumo:
ERP systems generally implement controls to prevent certain common kinds of fraud. In addition however, there is an imperative need for detection of more sophisticated patterns of fraudulent activity as evidenced by the legal requirement for company audits and the common incidence of fraud. This paper describes the design and implementation of a framework for detecting patterns of fraudulent activity in ERP systems. We include the description of six fraud scenarios and the process of specifying and detecting the occurrence of those scenarios in ERP user log data using the prototype software which we have developed. The test results for detecting these scenarios in log data have been verified and confirm the success of our approach which can be generalized to ERP systems in general.
Resumo:
Computer systems have become commonplace in most SMEs and technology is increasingly becoming a part of doing business. In recent years, the Internet has become readily available to businesses; consequently there has been growing pressure on SMEs to take up e-commerce. However, e-commerce is perceived by many as being unproven in terms of business benefit. This research aims to determine what, if any, benefits are derived from assimilating e-commerce technologies into SME business processes. This paper presents three in-depth case studies from the Real Estate industry in a regional setting. Overall, findings were positive and identified the following experiences: enhanced business efficiencies, cost benefits, improved customer interactions and increased business return on investment.
Resumo:
E-commerce technologies such as a website, email and the use of web browsers enables access to large amounts of information, facilitates communication and provides niche companies with an effective mechanism for competing with larger organisations world-wide. However recent literature has shown Australian SMEs have been slow in the uptake of these technologies. The aim of this research was to determine which factors were important in impacting on small firms' decision making in respect of information technology and e-commerce adoption. Findings indicate that generally the more a firm was concerned about its competitive position such a firm was likely to develop a web site. Moreover the 'Industry and Skill Demands' dimension suggested that as the formal education of the owner/manager increased, coupled with the likelihood that the firm was in the transport and storage or communication services industries, and realising the cost of IT adoption was in effect an investment, then such a firm would be inclined to develop a web site.