921 resultados para in vitro drug release
Resumo:
PROBLEM Chlamydia trachomatis is a significant worldwide health problem, and the often-asymptomatic disease can result in infertility. To develop a successful vaccine, a complete understanding of the immune response to chlamydial infection and development of genital tract pathology is required. METHOD OF STUDY We utilized the murine genital model of chlamydial infection. Mice were immunized with chlamydial major outer membrane protein, and vaginal lavage was assessed for the presence of neutralizing antibodies. These samples were then pre-incubated with Chlamydia muridarum and administered to the vaginal vaults of immune-competent female BALB/c mice to determine the effect on infection. RESULTS The administration of C. muridarum in conjunction with neutralizing antibodies reduced the numbers of mice infected, but a surprising finding was that this accelerated the development of severe oviduct pathology. CONCLUSION Antibodies play an under-recognized role in chlamydial infection and pathology development, which possibly involves interaction with Th1 immunity.
Resumo:
Bone development is influenced by the local mechanical environment. Experimental evidence suggests that altered loading can change cell proliferation and differentiation in chondro- and osteogenesis during endochondral ossification. This study investigated the effects of three-point bending of murine fetal metatarsal bone anlagen in vitro on cartilage differentiation, matrix mineralization and bone collar formation. This is of special interest because endochondral ossification is also an important process in bone healing and regeneration. Metatarsal preparations of 15 mouse fetuses stage 17.5 dpc were dissected en bloc and cultured for 7 days. After 3 days in culture to allow adherence they were stimulated 4 days for 20 min twice daily by a controlled bending of approximately 1000-1500 microstrain at 1 Hz. The paraffin-embedded bone sections were analyzed using histological and histomorphometrical techniques. The stimulated group showed an elongated periosteal bone collar while the total bone length was not different from controls. The region of interest (ROI), comprising the two hypertrophic zones and the intermediate calcifying diaphyseal zone, was greater in the stimulated group. The mineralized fraction of the ROI was smaller in the stimulated group, while the absolute amount of mineralized area was not different. These results demonstrate that a new device developed to apply three-point bending to a mouse metatarsal bone culture model caused an elongation of the periosteal bone collar, but did not lead to a modification in cartilage differentiation and matrix mineralization. The results corroborate the influence of biophysical stimulation during endochondral bone development in vitro. Further experiments with an altered loading regime may lead to more pronounced effects on the process of endochondral ossification and may provide further insights into the underlying mechanisms of mechanoregulation which also play a role in bone regeneration.
Resumo:
Background: If chondrocytes from the superficial, middle, and deep zones of articular cartilage could maintain or regain their characteristic properties during in vitro culture, it would be feasible to create constructs comprising these distinctive zones. ----- ----- Hypothesis: Zone-specific characteristics of zonal cell populations will disappear during 2-dimensional expansion but will reappear after 3-dimensional redifferentiation, independent of the culture technique used (alginate beads versus pellet culture).----- ----- Study Design: Controlled laboratory study.----- ----- Methods: Equine articular chondrocytes from the 3 zones were expanded in monolayer culture (8 donors) and subsequently redifferentiated in pellet and alginate bead cultures for up to 4 weeks. Glycosaminoglycans and DNA were quantified, along with immunohistochemical assessment of the expression of various zonal markers, including cartilage oligomeric protein (marking cells from the deeper zones) and clusterin (specifically expressed by superficial chondrocytes).----- ----- Results: Cell yield varied between zones, but proliferation rates did not show significant differences. Expression of all evaluated zonal markers was lost during expansion. Compared to the alginate bead cultures, pellet cultures showed a higher amount of glycosaminoglycans produced per DNA after redifferentiation. In contrast to cells in pellet cultures, cells in alginate beads regained zonal differences, as evidenced by zone-specific reappearance of cartilage oligomeric protein and clusterin, as well as significantly higher glycosaminoglycans production by cells from the deep zone compared to the superficial zone.----- ----- Conclusion: Chondrocytes isolated from the 3 zones of equine cartilage can restore their zone-specific matrix expression when cultured in alginate after in vitro expansion.