985 resultados para hybrid modelling
Resumo:
A network of 25 sonic stage sensors were deployed in the Squaw Creek basin upstream from Ames Iowa to determine if the state-of-the-art distributed hydrological model CUENCAS can produce reliable information for all road crossings including those that cross small creeks draining basins as small as 1 sq. mile. A hydraulic model was implemented for the major tributaries of the Squaw Creek where IFC sonic instruments were deployed and it was coupled to CUENCAS to validate the predictions made at small tributaries in the basin. This study demonstrates that the predictions made by the hydrological model at internal locations in the basins are as accurate as the predictions made at the outlet of the basin. Final rating curves based on surveyed cross sections were developed for the 22 IFC-bridge sites that are currently operating, and routine forecast is provided at those locations (see IFIS). Rating curves were developed for 60 additional bridge locations in the basin, however, we do not use those rating curves for routine forecast because the lack of accuracy of LiDAR derived cross sections is not optimal. The results of our work form the basis for two papers that have been submitted for publication to the Journal of Hydrological Engineering. Peer review of our work will gives a strong footing to our ability to expand our results from the pilot Squaw Creek basin to all basins in Iowa.
Resumo:
The objective of this work was to evaluate the processes of selection in a citrus hybrid population using segregation analysis of RAPD markers. The segregation of 123 RAPD markers between 'Cravo' mandarin (Citrus reticulata Blanco) and 'Pêra' sweet orange (C. sinensis (L.) Osbeck) was analysed in a F1 progeny of 94 hybrids. Genetic composition, diversity, heterozygosity, differences in chromosomal structure and the presence of deleterious recessive genes are discussed based on the segregation ratios obtained. A high percentage of markers had a skeweness of the 1:1 expected segregation ratio in the F1 population. Many markers showed a 3:1 segregation ratio in both varieties and 1:3 in 'Pêra' sweet orange, probably due to directional selection processes. The distribution analysis of the frequencies of the segregant markers in a hybrid population is a simple method which allows a better understanding of the genetics of citrus group.
Resumo:
Background: Bone health is a concern when treating early stage breast cancer patients with adjuvant aromatase inhibitors. Early detection of patients (pts) at risk of osteoporosis and fractures may be helpful for starting preventive therapies and selecting the most appropriate endocrine therapy schedule. We present statistical models describing the evolution of lumbar and hip bone mineral density (BMD) in pts treated with tamoxifen (T), letrozole (L) and sequences of T and L. Methods: Available dual-energy x-ray absorptiometry exams (DXA) of pts treated in trial BIG 1-98 were retrospectively collected from Swiss centers. Treatment arms: A) T for 5 years, B) L for 5 years, C) 2 years of T followed by 3 years of L and, D) 2 years of L followed by 3 years of T. Pts without DXA were used as a control for detecting selection biases. Patients randomized to arm A were subsequently allowed an unplanned switch from T to L. Allowing for variations between DXA machines and centres, two repeated measures models, using a covariance structure that allow for different times between DXA, were used to estimate changes in hip and lumbar BMD (g/cm2) from trial randomization. Prospectively defined covariates, considered as fixed effects in the multivariable models in an intention to treat analysis, at the time of trial randomization were: age, height, weight, hysterectomy, race, known osteoporosis, tobacco use, prior bone fracture, prior hormone replacement therapy (HRT), bisphosphonate use and previous neo-/adjuvant chemotherapy (ChT). Similarly, the T-scores for lumbar and hip BMD measurements were modeled using a per-protocol approach (allowing for treatment switch in arm A), specifically studying the effect of each therapy upon T-score percentage. Results: A total of 247 out of 546 pts had between 1 and 5 DXA; a total of 576 DXA were collected. Number of DXA measurements per arm were; arm A 133, B 137, C 141 and D 135. The median follow-up time was 5.8 years. Significant factors positively correlated with lumbar and hip BMD in the multivariate analysis were weight, previous HRT use, neo-/adjuvant ChT, hysterectomy and height. Significant negatively correlated factors in the models were osteoporosis, treatment arm (B/C/D vs. A), time since endocrine therapy start, age and smoking (current vs. never).Modeling the T-score percentage, differences from T to L were -4.199% (p = 0.036) and -4.907% (p = 0.025) for the hip and lumbar measurements respectively, before any treatment switch occurred. Conclusions: Our statistical models describe the lumbar and hip BMD evolution for pts treated with L and/or T. The results of both localisations confirm that, contrary to expectation, the sequential schedules do not seem less detrimental for the BMD than L monotherapy. The estimated difference in BMD T-score percent is at least 4% from T to L.
Resumo:
Abstract
Resumo:
Objectives: Assess the main problems referred by the patients and observed by the professionals after the bucodental rehabilitation with an implant-supported hybrid prothesis. Patients and Methods: A retrospective study was carried out in which there were 43 patients included who were visited in the Department of Oral Surgery and Orofacial Implantology of University of Barcelona Dental School for one year. An oral rehabilitation with an implant-supported hybrid prosthesis was made to those patients. The following variables were registered: age, gender, number of inserted implants, type of implant and principal problems produced by the hybrid prosthesis. Results: The rehabilitation with an implant supported hybrid prosthesis was only performed in 43 of 116 cases treated in one year (January, 2006 to January, 2007). They were 26 men and 17 women of ages between 37 and 74 years, being the rate age of 56,5 years. The main complication recorded was the mucositis, associated frequently with a difficulty to carry a correct oral hygiene and to an overextention of the tail of resin of the prosthesis. Other observed problems were the peri-implantitis, the break of the acrylic teeth and the loss of some of the prosthetic screws. Conclusions: The most frequent complication after the laying of an implant supported hybrid prosthesis was the mucositis, associated mainly with a prosthetic tail too long and to the consequent difficulty of carrying a correct oral hygiene. In spite of the high prevalence of observed complications, most of them were mild and resolved on subsequent visits.
Resumo:
Rough a global coarse problem. Although these techniques are usually employed for problems in which the fine-scale processes are described by Darcy's law, they can also be applied to pore-scale simulations and used as a mathematical framework for hybrid methods that couples a Darcy and pore scales. In this work, we consider a pore-scale description of fine-scale processes. The Navier-Stokes equations are numerically solved in the pore geometry to compute the velocity field and obtain generalized permeabilities. In the case of two-phase flow, the dynamics of the phase interface is described by the volume of fluid method with the continuum surface force model. The MsFV method is employed to construct an algorithm that couples a Darcy macro-scale description with a pore-scale description at the fine scale. The hybrid simulations results presented are in good agreement with the fine-scale reference solutions. As the reconstruction of the fine-scale details can be done adaptively, the presented method offers a flexible framework for hybrid modeling.
Resumo:
The objective of this work was to evaluate the genetic diversity of 16 maize inbred lines, and to determine the correlation between genetic distance and hybrid performance, using random amplified polymorphic DNA (RAPD) molecular markers. Twenty-two different random primers were used, which resulted in the amplification of 265 fragments, 237 (84.44%) of them being polymorphic. A genetic similarity matrix was created from the RAPD data, using Jaccard coefficient, and a dendrogram was constructed. Hybrid analyses were carried out using random block design and Griffing method VI for diallel crossings. The genetic associations showed five distinct heterotic groups. Correlations between genetic divergences detected by RAPD, as well as the means observed in the diallel crossings were positive and significant for plant height, ear height, prolificacy, and grain weight. The correlation of genetic divergences, detected by RAPD, and the specific combining ability between heterotic group associations, showed significance in all characteristics under study, except prolificacy. A direct relationship between genetic divergence and productivity was found in 79.2% of the 120 hybrids confirming the hypothesis that genetic divergence is directly related to the performance of hybrids and is efficient in predicting it.
Resumo:
1. The ecological niche is a fundamental biological concept. Modelling species' niches is central to numerous ecological applications, including predicting species invasions, identifying reservoirs for disease, nature reserve design and forecasting the effects of anthropogenic and natural climate change on species' ranges. 2. A computational analogue of Hutchinson's ecological niche concept (the multidimensional hyperspace of species' environmental requirements) is the support of the distribution of environments in which the species persist. Recently developed machine-learning algorithms can estimate the support of such high-dimensional distributions. We show how support vector machines can be used to map ecological niches using only observations of species presence to train distribution models for 106 species of woody plants and trees in a montane environment using up to nine environmental covariates. 3. We compared the accuracy of three methods that differ in their approaches to reducing model complexity. We tested models with independent observations of both species presence and species absence. We found that the simplest procedure, which uses all available variables and no pre-processing to reduce correlation, was best overall. Ecological niche models based on support vector machines are theoretically superior to models that rely on simulating pseudo-absence data and are comparable in empirical tests. 4. Synthesis and applications. Accurate species distribution models are crucial for effective environmental planning, management and conservation, and for unravelling the role of the environment in human health and welfare. Models based on distribution estimation rather than classification overcome theoretical and practical obstacles that pervade species distribution modelling. In particular, ecological niche models based on machine-learning algorithms for estimating the support of a statistical distribution provide a promising new approach to identifying species' potential distributions and to project changes in these distributions as a result of climate change, land use and landscape alteration.
Resumo:
Knowledge about spatial biodiversity patterns is a basic criterion for reserve network design. Although herbarium collections hold large quantities of information, the data are often scattered and cannot supply complete spatial coverage. Alternatively, herbarium data can be used to fit species distribution models and their predictions can be used to provide complete spatial coverage and derive species richness maps. Here, we build on previous effort to propose an improved compositionalist framework for using species distribution models to better inform conservation management. We illustrate the approach with models fitted with six different methods and combined using an ensemble approach for 408 plant species in a tropical and megadiverse country (Ecuador). As a complementary view to the traditional richness hotspots methodology, consisting of a simple stacking of species distribution maps, the compositionalist modelling approach used here combines separate predictions for different pools of species to identify areas of alternative suitability for conservation. Our results show that the compositionalist approach better captures the established protected areas than the traditional richness hotspots strategies and allows the identification of areas in Ecuador that would optimally complement the current protection network. Further studies should aim at refining the approach with more groups and additional species information.
Resumo:
The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable approach to risk estimation would be to use organ-specific non-linear risk models applied to the dose distributions of organs within or near the treatment fields (lungs and contralateral breast in the case of breast radiotherapy) as the majority of radiation-induced secondary cancers are found in the beam-bordering regions.