909 resultados para high-turbidity coastal environments


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dinoflagellate cysts are useful for reconstructing upper water conditions. For adequate reconstructions detailed information is required about the relationship between modern day environmental conditions and the geographic distribution of cysts in sediments. This Atlas summarises the modern global distribution of 71 organicwalled dinoflagellate cyst species. The synthesis is based on the integration of literature sources together with data of 2405 globally distributed surface sediment samples that have been preparedwith a comparable methodology and taxonomy. The distribution patterns of individual cyst species are being comparedwith environmental factors that are knownto influence dinoflagellate growth, gamete production, encystment, excystment and preservation of their organic-walled cysts: surface water temperature, salinity, nitrate, phosphate, chlorophyll-a concentrations and bottom water oxygen concentrations. Graphs are provided for every species depicting the relationship between seasonal and annual variations of these parameters and the relative abundance of the species. Results have been compared with previously published records; an overview of the ecological significance as well as information about the seasonal production of each individual species is presented. The relationship between the cyst distribution and variation in the aforementioned environmental parameters was analysed by performing a canonical correspondence analysis. All tested variables showed a positive relationship on the 99% confidence level. Sea-surface temperature represents the parameter corresponding to the largest amount of variance within the dataset (40%) followed by nitrate, salinity, phosphate and bottom-water oxygen concentration, which correspond to 34%, 33%, 25% and 24% of the variance, respectively. Characterisations of selected environments as well as a discussion about how these factors could have influenced the final cyst yield in sediments are included.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrographers have traditionally referred to the nearshore area as the "white ribbon" area due to the challenges associated with the collection of elevation data in this highly dynamic transitional zone between terrestrial and marine environments. Accordingly, available information in this zone is typically characterised by a range of datasets from disparate sources. In this paper we propose a framework to 'fill' the white ribbon area of a coral reef system by integrating multiple elevation and bathymetric datasets acquired by a suite of remote-sensing technologies into a seamless digital elevation model (DEM). A range of datasets are integrated, including field-collected GPS elevation points, terrestrial and bathymetric LiDAR, single and multibeam bathymetry, nautical chart depths and empirically derived bathymetry estimations from optical remote sensing imagery. The proposed framework ranks data reliability internally, thereby avoiding the requirements to quantify absolute error and results in a high resolution, seamless product. Nested within this approach is an effective spatially explicit technique for improving the accuracy of bathymetry estimates derived empirically from optical satellite imagery through modelling the spatial structure of residuals. The approach was applied to data collected on and around Lizard Island in northern Australia. Collectively, the framework holds promise for filling the white ribbon zone in coastal areas characterised by similar data availability scenarios. The seamless DEM is referenced to the horizontal coordinate system MGA Zone 55 - GDA 1994, mean sea level (MSL) vertical datum and has a spatial resolution of 20 m.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes glossary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The southwest-facing coastal bluff present at Discovery Park, Seattle, Washington, displays distinctive joints throughout the exposed Lawton Clay Member. Exhibiting a characteristic local stratigraphy of permeable advance outwash over the impermeable proglacial lacustrine clay, this bluff is located in an area of Seattle at high risk from landslides. This project addressed the relationship between the joints observed at this coastal bluff and the coherency of the bluff as a whole, through remote sensing and field measurements. Aerial drone photography taken of the bluff was processed through a photogrammetry software to produce a 3-dimensional Structure from Motion model, allowing for a digital manipulation and broad examination of the bluff not possible by foot. Stereonet plots produced from these measurements provided insight into patterns of varying joint strike along a horizontal transect of the observed bluff face. Taken together, these two visualizations provided a better picture of the possible chicken-and-egg interaction of the joints and bluff topography; they demonstrated the likelihood that the joint formation at the bluff was most likely to be primarily influenced by the local topography of the bluff over other sources of possible tensional stress in the immediate area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Senior thesis written for Oceanography 445

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New data on the settling velocity of artificial sediments and natural sands at high concentrations are presented. The data are compared with a widely used semiempirical Richardson and Zaki equation (Trans. Inst. Chem. Eng. 32 (1954) 35), which gives an accurate measure of the reduction in velocity as a function of concentration and an experimentally determined empirical power n. Here, a simple method of determining n is presented using standard equations for the clear water settling velocity and the seepage flow within fixed sediment beds. The resulting values for n are compared against values derived from new and existing laboratory data for beach and filter sands. For sands, the appropriate values of n are found to differ significantly from those suggested by Richardson and Zaki for spheres, and are typically larger, corresponding to a greater reduction in settling velocity at high concentrations. For fine and medium sands at concentrations of order 0.4, the hindered settling velocity reduces to about 70% of that expected using values of n derived for spheres. At concentrations of order 0.15, the hindered settling velocity reduces to less than half of the settling velocity in clear water. These reduced settling velocities have important implications for sediment transport modelling close to, and within, sheet flow layers and in the swash zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a result of their relative concentration towards the respective Atlantic margins, the silicic eruptives of the Parana (Brazil)-Etendeka large igneous province are disproportionately abundant in the Etendeka of Namibia. The NW Etendeka silicic units, dated at similar to132 Ma, occupy the upper stratigraphic levels of the volcanic sequences, restricted to the coastal zone, and comprise three latites and five quartz latites (QL). The large-volume Fria QL is the only low-Ti type. Its trace element and isotopic signatures indicate massive crustal input. The remaining NW Etendeka silicic units are enigmatic high-Ti types, geochemically different from low-Ti types. They exhibit chemical affinities with the temporally overlapping Khumib high-Ti basalt (see Ewart et al. Part 1) and high crystallization temperatures (greater than or equal to980 to 1120degreesC) inferred from augite and pigeonite phenocrysts, both consistent with their evolution from a mafic source. Geochemically, the high-Ti units define three groups, thought genetically related. We test whether these represent independent liquid lines of descent from a common high-Ti mafic parent. Although the recognition of latites reduces the apparent silica gap, difficulty is encountered in fractional crystallization models by the large volumes of two QL units. Numerical modelling does, however, support large-scale open-system fractional crystallization, assimilation of silicic to basaltic materials, and magma mixing, but cannot entirely exclude partial melting processes within the temporally active extensional environment. The fractional crystallization and mixing signatures add to the complexity of these enigmatic and controversial silicic magmas. The existence, however, of temporally and spatially overlapping high-Ti basalts is, in our view, not coincidental and the high-Ti character of the silicic magmas ultimately reflects a mantle signature.