849 resultados para high fiber diet
Resumo:
Point-probe optical fiber chem-sensors have been implemented using cladding etched fiber Bragg gratings. The sensors possess refractive index sensing capability that can be utilized to measure chemical concentrations. The Bragg wavelength shift reaches 8 nm when the index of surrounding medium changes from 1.33 to 1.44, giving maximum sensitivity more than 10 times higher than that of previously reported devices. More importantly, the dual-grating configuration of the point-probe sensors offers a temperature reference function, permitting accurate measurement of refractive index encoded chemical concentrations.
Resumo:
A high frequency sensing interrogation system by using fiber Bragg grating based microwave photonic filtering is proposed, in which the wavelength measurement sensitivity is proportional to the RF modulation frequency applied to the optical signal.
Resumo:
A theoretical model allows for the characterization and optimization of the intra-cavity pulse evolutions in high-power fiber lasers. Multi-parameter analysis of laser performance can be made at a fraction of the computational cost. © 2010 Optical Society of America.
Resumo:
We propose the design of a novel ?-shaped fiber laser resonator and apply it to build a long-cavity normaldispersion mode-locked Er-fiber laser which features enhanced functionalities for management and optimization of pulsed lasing regimes. We report the generation of sub-nanosecond pulses with the energy of ~0.5 µJ at a kilohertz-scale repetition rate in an all-fiber system based on the new laser design. A combination of special design solutions in the laser, such as polarization instability compensation in the ultra-long arm of the resonator, intra-cavity spectral selection of radiation with a broadband fiber Bragg grating, and polarization selection by means of a tilted refractive index grating, ensures low amplified spontaneous emission (ASE) noise and high stability of the laser system output parameters.
Resumo:
Based on the rate equations describing the operation of the Er3+, Pr3+ -codoped ZBLAN fiber lasers with different pump configurations, theoretical calculations that relate to the population characteristics and optimization of CW operation of high power Er3+, Pr3+ :ZBLAN double-clad fiber lasers are presented. Using the measured ET (energy-transfer), ETU (energy-transfer-upconversion) and CR (cross-relaxation) parameters relevant to Er3+, Pr3+ -codoped ZBLAN, a good agreement between the theoretical results from the model and recently reported experimental measurements is obtained. The effects on the slope efficiency of a number of laser parameters including fiber length, reflectance of the output mirror and pumping configuration are quantitatively analyzed and used for the design and optimization of high power Er3+, Pr3+ -codoped ZBLAN fiber lasers.
Resumo:
We report high-capacity (> 1 Tb/s) amplification by a fiber optical parametric amplifier in different roles displaying compatibility and versatility in future WDM networks with phase-shift keying modulation format.
Resumo:
We demonstrate the use of tilted fiber gratings to assist the generation of localized infrared surface Plasmons with short propagation lengths and a sensitivity of dλ/dn = 3365 nm in the aqueous index regime. It was also found that the resonances could be spectrally tuned over 1000 nm at the same spatial region with high coupling efficiency (in excess of 25 dB) by altering the polarization of the light illuminating the device. © 2007 Optical Society of America.
Resumo:
We show, using nonlinearity management, that the optimal performance in high-bit-rate dispersion-managed fiber systems with hybrid amplification is achieved for a specific amplifier spacing that is different from the asymptotically vanishing length corresponding to ideally distributed amplification [Opt. Lett. 15, 1064 (1990)]. In particular, we prove the existence of a nontrivial optimal span length for 40-Gbit/s wavelength-division transmission systems with Raman-erbium-doped fiber amplification. Optimal amplifier lengths are obtained for several dispersion maps based on commonly used transmission fibers. © 2005 Optical Society of America.
Resumo:
The joint effect of fiber chromatic dispersion and fiber nonlinearity onto single-sideband and double-sideband modulated radio-over-fiber links is investigated. Experimental and simulated results show that modulation suppression caused by the chromatic dispersion in radio-over-fiber links can be successfully eliminated in both schemes only when the system is in the linear regime. Under nonlinear transmission the received microwave carrier power depends on the optical incident power.
Resumo:
The performances of L-band EDFA are modeled and analyzed, based on C-band EDFA, through variation of pump power, ion concentration and fiber length. The fiber length promises higher performance than others. © 2005 Optical Society of America.
Resumo:
Long period fiber grating (LPFG) can be used as active gain controlling device in EDFA. However, LPFGs fabricated in the standard telecom fiber only have a typical temperature sensitivity of 3-10nm/100°C, which may not be sufficient for implementing tuneable filters capable of wide tuning range and high tuning efficiency. In this paper, we report a theoretical and experimental investigation of thermal properties of LPFGs fabricated in B/Ge co-doped optical fiber. We have found that the temperature sensitivity of the LPFGs in the B/Ge fiber is considerably increased compared with those produced in the standard fiber. The LPFGs written in the B/Ge fiber have achieved, on average, one order of magnitude higher sensitivity than that of the LPFGs produced in the standard telecom fiber. We have also identified that the thermal response of LPFG is strongly dependent on the order of the coupled resonant cladding mode. The maximum sensitivity of 1.75nm/°C achieved by the 10th cladding mode of the 240μm LPFG is nearly 24 times that of the minimum value (0.075nm/C) exhibited by the 30th mode of the 34μm LPFG. Such devices may lead to high-efficiency and low-cost thermal/electrical tunable loss filters or sensors with extremely high temperature resolution.
Resumo:
We report an investigation of thermal properties of long-period fiber gratings (LPFGs) of various periods fabricated in the conventional B-Ge codoped fiber. It has been found that the temperature sensitivity of the LPFGs produced in the B-Ge fiber can be significantly enhanced as compared with the standard telecom fiber. A total of 27.5-nm spectral shift was achieved from only 10 °C change in temperature for an LPFG with 240-μm period, demonstrating a first ever reported high sensitivity of 2.75 nm/°C. Such an LPFG may lead to high-efficiency and low-cost thermal/electrical tunable loss filters or sensors with extremely high-temperature resolution. The nonlinear thermal response of the supersensitive LPG was also reported and first explained.
Resumo:
For the first time to the authors' knowledge, fiber Bragg gratings (FBGs) with >80° tilted structures nave been fabricated and characterized. Their performance in sensing temperature, strain, and the surrounding medium's refractive index was investigated. In comparison with normal FBGs and long-period gratings (LPGs), >80° tilted FBGs exhibit significantly higher refractive-index responsivity and lower thermal cross sensitivity. When the grating sensor was used to detect changes in refractive index, a responsivity as high as 340 nm/refractive-index unit near an index of 1.33 was demonstrated, which is three times higher than that of conventional LPGs. © 2006 Optical Society of America.
Resumo:
We demonstrate a high-efficiency random lasing in a 850 m span of a phosphosilicate fiber. Random distributed feedback owing to the Rayleigh backscattering in the fiber enables narrowband generation with output power of up to 7.3 W at the Stokes wavelength λS = 1308 nm from 11 Wof the pump power at λP = 1115 nm. The laser demonstrates unique generation efficiency. Near the generation threshold, more than 2 W of output power is generated from only 0.5 W of pump power excess over the generation threshold. At high pump power, the quantum conversion efficiency defined as a ratio of generated and pump photons at the laser output exceeds 100%. Itis explained by the fact that every pump photon is converted into the Stokes photon far from the output fiber end, while the Stokes photons have lower attenuation than the pump photons. © 2014 Astro Ltd.