902 resultados para heterogeneous catalytic reaction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZrO2-Al2O3 composite oxides and supported Ni catalysts were prepared, and characterized by N-2 adsorption/desorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques. The catalytic performance and carbon deposition was also investigated. This mesoporous composite oxide is shown to be a promising catalyst support. An increase in the catalytic activity and stability of methane and carbon dioxide reforming reaction was resulted from the zirconia addition, especially at 5wt% ZrO2 content. The Ni catalyst supported ZrO2-Al2O3 has a strong resistance to sintering and the carbon deposition in a relatively long-term reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acetohydroxy acid synthases (AHAS) are thiamin diphosphate- (ThDP-) and FAD-dependent enzymes that catalyze the first common step of branched-chain amino acid biosynthesis in plants, bacteria, and fungi. Although the flavin cofactor is not chemically involved in the physiological reaction of AHAS, it has been shown to be essential for the structural integrity and activity of the enzyme. Here, we report that the enzyme-bound FAD in AHAS is reduced in the course of catalysis in a side reaction. The reduction of the enzyme-bound flavin during turnover of different substrates under aerobic and anaerobic conditions was characterized by stopped-flow kinetics using the intrinsic FAD absorbance. Reduction of enzyme-bound FAD proceeds with a net rate constant of k' = 0.2 s(-1) in the presence of oxygen and approximately 1 s(-1) under anaerobic conditions. No transient flavin radicals are detectable during the reduction process while time-resolved absorbance spectra are recorded. Reconstitution of the binary enzyme-FAD complex with the chemically synthesized intermediate 2-(hydroxyethyl)-ThDP also results in a reduction of the flavin. These data provide evidence for the first time that the key catalytic intermediate 2-(hydroxyethyl)ThDP in the carbanionic/enamine form is not only subject to covalent addition of 2-keto acids and an oxygenase side reaction but also transfers electrons to the adjacent FAD in an intramolecular redox reaction yielding 2-acetyl-ThDP and reduced FAD. The detection of the electron transfer supports the idea of a common ancestor of acetohydroxy acid synthase and pyruvate oxidase, a homologous ThDP- and FAD-dependent enzyme that, in contrast to AHASs, catalyzes a reaction that relies on intercofactor electron transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A finite difference method for simulating voltammograms of electrochemically driven enzyme catalysis is presented. The method enables any enzyme mechanism to be simulated. The finite difference equations can be represented as a matrix equation containing a nonlinear sparse matrix. This equation has been solved using the software package Mathematica. Our focus is on the use of cyclic voltammetry since this is the most commonly employed electrochemical method used to elucidate mechanisms. The use of cyclic voltammetry to obtain data from systems obeying Michaelis-Menten kinetics is discussed, and we then verify our observations on the Michaelis-Menten system using the finite difference simulation. Finally, we demonstrate how the method can be used to obtain mechanistic information on a real redox enzyme system, the complex bacterial molybdoenzyme xanthine dehydrogenase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The turbostratic mesoporous carbon blacks were prepared by catalytic chemical vapour decomposition (CCVD) of acetylene using Ni/MgO catalysts prepared by co-precipitation. The relationship between deposition conditions and the nanostructures of resultant carbon black materials was investigated. It was found that the turbostratic and textural structures of carbon blacks are dependent on the deposition temperature and nickel catalyst loading. Higher deposition temperature increases the carbon crystallite unit volume V-nano and reduces the surface area of carbon samples. Moreover, a smaller V-nano is produced by a higher Ni loading at the same deposition temperature. In addition of the pore structure and the active metal surface area of the catalyst, the graphitic degree or electronic conductivity of the carbon support is also a key issue to the activity of the supported catalyst. V-nano is a very useful parameter to describe the effect of the crystalline structure of carbon blacks on the reactivity of carbon blacks in oxygen-carbon reaction and the catalytic activity of carbon-supported catalyst in ammonia decomposition semi-quantitatively. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purple acid phosphatases (PAPs) belong to the family of binuclear metallohydrolases and catalyse the hydrolysis of a large group of phosphoester substrates at acidic pH. Despite structural conservation in their active sites PAPs appear to display mechanistic versatility. Here, aspects of the catalytic mechanism of two PAPs are investigated using the inhibitors vanadate and fluoride as probes. While the magnitude of their vanadate inhibition constants are similar the two enzymes differ with respect to the mode of inhibition; vanadate interacts in a non-competitive fashion with pig PAP (K-i = 40 mu mol L-1) while it inhibits red kidney bean PAP competitively (K-i = 30 mu mol L-1). Similarly, fluoride also acts as a competitive inhibitor for red kidney bean PAP, independent of pH, while the inhibition of pig PAP by fluoride is uncompetitive at low pH and non-competitive at higher pH, independent of metal ion composition. Furthermore, while fluoride acts as a slow-binding inhibitor in pig PAP it binds rapidly to the catalytic site of the red kidney bean enzyme. Since vanadate and fluoride are proposed to act as transition state and nucleophile mimics, respectively, the observed differences in inhibition kinetics indicate subtle but distinct variations in the reaction mechanism of these enzymes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesoporous chromium oxide (Cr2O3) nanocrystals were first synthesized by the thermal decomposition reaction of Cr(NO3)(3)(circle)9H(2)O using citric acid monohydrate (CA) as the mesoporous template agent. The texture and chemistry of chromium oxide nanocrystals were characterized by N-2 adsorption-desorption isotherms, FTIR, X-ray diffraction (XRD), UV-vis, and thermoanalytical methods. It was shown that the hydrate water and CA are the crucial factors in influencing the formation of mesoporous Cr2O3 nanocrystals in the mixture system. The decomposition of CA results in the formation of a mesoporous structure with wormlike pores. The hydrate water of the mixture provides surface hydroxyls that act as binders, making the nanocrystals aggregate. The pore structures and phases of chromium oxide are affected by the ratio of precursor-to-CA, thermal temperature, and time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of the hydrogen production processes are designed for large-scale industrial uses and are not suitable for a compact hydrogen device to be used in systems like solid polymer fuel cells. Integrating the reaction step, the gas purification and the heat supply can lead to small-scale hydrogen production systems. The aim of this research is to study the influence of several reaction parameters on hydrogen production using liquid phase reforming of sugar solution over Pt, Pd, and Ni supported on nanostructured supports. It was found that the desired catalytic pathway for H-2 production involves cleavage of C-C, C-H and O-H bonds that adsorb on the catalyst surface. Thus a good catalyst for production of H2 by liquid-phase reforming must facilitate C-C bond cleavage and promote removal of adsorbed CO species by the water-gas shift reaction, but the catalyst must not facilitate C-O bond cleavage and hydrogenation of CO or CO2. Apart from studying various catalysts, a commercial Pt/gamma-alumina catalyst was used to study the effect of temperature at three different temperatures of 458, 473 and 493 K. Some of the spent catalysts were characterised using TGA, SEM and XRD to study coke deposition. The amorphous and organised form of coke was found on the surface of the catalyst. (C) 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deoxygenation of vegetable oils was studied over a Ni/Zr-laponite catalyst in various nickel loading composition. Stearic acid has been used as a model compounds. The liquid and gas products were analyzed using gas chromatograph equipped with thermal conductivity detector and flame ionization detector. From product distribution it was determined the effect of catalyst composition on reaction conditions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the synthesis, characterisation and catalytic performance of two nature-inspired biomass-derived electro-catalysts for the oxygen reduction reaction in fuel cells. The catalysts were prepared via pyrolysis of a real food waste (lobster shells) or by mimicking the composition of lobster shells using chitin and CaCO3 particles followed by acid washing. The simplified model of artificial lobster was prepared for better reproducibility. The calcium carbonate in both samples acts as a pore agent, creating increased surface area and pore volume, though considerably higher in artificial lobster samples due to the better homogeneity of the components. Various characterisation techniques revealed the presence of a considerable amount of hydroxyapatite left in the real lobster samples after acid washing and a low content of carbon (23%), nitrogen and sulphur (<1%), limiting the surface area to 23 m2/g, and consequently resulting in rather poor catalytic activity. However, artificial lobster samples, with a surface area of ≈200 m2/g and a nitrogen doping of 2%, showed a promising onset potential, very similar to a commercially available platinum catalyst, with better methanol tolerance, though with lower stability in long time testing over 10,000 s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reproducible preparation of a number of modified clay and clay~like materials by both conventional and microwave-assisted chemistry, and their subsequent characterisation, has been achieved, These materials are designed as hydrocracking catalysts for the upgrading of liquids obtained by the processing of coal. Contact with both coal derived liquids and heavy petroleum resids has demonstrated that these catalysts are superior to established proprietary catalysts in terms of both initial activity and deactivation resistance, Of particular activity were a chromium-pillared montmorillonite and a tin intercalated laponite, Layered Double Hydroxides (LDH's) have exhibited encouraging thermal stability. Development of novel methods for hydrocracking coal derived liquids, using a commercial microwave oven, modified reaction vessels and coal model compounds has been attempted. Whilst safe and reliable operation of a high pressure microwave "bomb" apparatus employing hydrogen, has been achieved, no hydrotreatment reactions occurred,

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Functionalisation of polystyrene, PS, and ethylene-co-propylene-co-cyclopentadiene terpolymer, EPDM, with acrylic acid, AA, in a melt reactive processing procedure, in the presence of peroxide, trigonox 101, and coagents, Divinyl benzene, DVB (for PS), and trimethylolpropane triacrylate, TRIS (for EPDM), were successfully carried out. The level of grafting of the AA, as determined by infrared analysis, was significantly enhanced by the coagents. The grafting reaction of AA takes place simultaneously with homopolymerisation of the monomers, melt degradation and crosslinking reactions of the polymers. The extent of these competing reactions were inferred from measurements of melt flow index and insoluble gel content. Through a judicious use of both the peroxide and the coagent, particularly TRIS, unwanted side reactions were minimized. Five different processing methods were investigated for both functionalisation experiments; the direct addition of the pre-mixed polymer with peroxide and reactive modifiers was found to give optimum condition for grafting. The functionalised PS, F-PS, and EPDM, F-EPD, and maleinised polypropylene carrying a potential antioxidant, N-(4-anilinophenyl maleimide), F-PP were melt blended in binary mixtures of F-PS/F-EPD and F-PP/F-EPD in the presence (or absence) of organic diamines which act as an interlinking agent, e.g, Ethylene Diamine, EDA, and Hexamethylene Diamine, HEMDA. The presence of an interlinking agent, particularly HEMDA shows significant enhancement in the mechanical properties of the blend, suggesting that the copolymer formed has acted as compatibiliser to the otherwise incompatible polymer pairs. The functionalised and amidised blends, F and A-PSIEPDM (SPOI) and F and A-PPIEPDM (SPD2) were subsequently used as compatibiliser concentrates in the corresponding PSIEPDM and PPIEPDM blends containing various weight propotion of the homopolymers. The SPD1 caused general decreased in tensile strength, albeit increased in drop impact strength particularly in blend containing high PS content (80%). The SPD2 was particularly effective in enhancing impact strength in blends containing low weight ratio of PP (<70%). The SPD2 was also a good thermal antioxidant albeit less effective than commercial antioxidant. In all blends the evidence of compatibility was examined by scanning electron microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In studies of complex heterogeneous networks, particularly of the Internet, significant attention was paid to analyzing network failures caused by hardware faults or overload, where the network reaction was modeled as rerouting of traffic away from failed or congested elements. Here we model another type of the network reaction to congestion - a sharp reduction of the input traffic rate through congested routes which occurs on much shorter time scales. We consider the onset of congestion in the Internet where local mismatch between demand and capacity results in traffic losses and show that it can be described as a phase transition characterized by strong non-Gaussian loss fluctuations at a mesoscopic time scale. The fluctuations, caused by noise in input traffic, are exacerbated by the heterogeneous nature of the network manifested in a scale-free load distribution. They result in the network strongly overreacting to the first signs of congestion by significantly reducing input traffic along the communication paths where congestion is utterly negligible. © Copyright EPLA, 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient three-dimensional (3D) hybrid material of nitrogen-doped graphene sheets (N-RGO) supporting molybdenum disulfide (MoS2) nanoparticles with high-performance electrocatalytic activity for hydrogen evolution reaction (HER) is fabricated by using a facile hydrothermal route. Comprehensive microscopic and spectroscopic characterizations confirm the resulting hybrid material possesses a 3D crumpled few-layered graphene network structure decorated with MoS2 nanoparticles. Electrochemical characterization analysis reveals that the resulting hybrid material exhibits efficient electrocatalytic activity toward HER under acidic conditions with a low onset potential of 112 mV and a small Tafel slope of 44 mV per decade. The enhanced mechanism of electrocatalytic activity has been investigated in detail by controlling the elemental composition, electrical conductance and surface morphology of the 3D hybrid as well as Density Functional Theory (DFT) calculations. This demonstrates that the abundance of exposed active sulfur edge sites in the MoS2 and nitrogen active functional moieties in N-RGO are synergistically responsible for the catalytic activity, whilst the distinguished and coherent interface in MoS 2 /N-RGO facilitates the electron transfer during electrocatalysis. Our study gives insights into the physical/chemical mechanism of enhanced HER performance in MoS2/N-RGO hybrids and illustrates how to design and construct a 3D hybrid to maximize the catalytic efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SQUID magnetometry, normally used to characterise the properties of solids, was used to follow a clock reaction in solution, namely the auto-catalytic oxidation of [Co(ii)EDTA] by HO, in real time and it was shown that, in combination with other methods (e.g., magnetic resonance proton relaxation studies and UV-vis absorption analysis), SQUID magnetometry can be a powerful method in elucidating and interpreting the time-profile of chemical reactions so as long as reactants, intermediates and products have suitably large differences in their respective magnetic susceptibilities. © 2009 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Control of spatiotemporal chaos is achieved in the catalytic oxidation of CO on Pt(110) by localized modification of the kinetic properties of the surface chemical reaction. In the experiment, a small temperature heterogeneity is created on the surface by a focused laser beam. This heterogeneity constitutes a pacemaker and starts to emit target waves. These waves slowly entrain the medium and suppress the spatiotemporal chaos that is present in the absence of control. We compare this experimental result with a numerical study of the Krischer-Eiswirth-Ertl model for CO oxidation on Pt(110). We confirm the experimental findings and identify regimes where complete and partial controls are possible.