853 resultados para height partition clustering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-scale structure formation can be modeled as a nonlinear process that transfers energy from the largest scales to successively smaller scales until it is dissipated, in analogy with Kolmogorov’s cascade model of incompressible turbulence. However, cosmic turbulence is very compressible, and vorticity plays a secondary role in it. The simplest model of cosmic turbulence is the adhesion model, which can be studied perturbatively or adapting to it Kolmogorov’s non-perturbative approach to incompressible turbulence. This approach leads to observationally testable predictions, e.g., to the power-law exponent of the matter density two-point correlation function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Microarray technique is rather powerful, as it allows to test up thousands of genes at a time, but this produces an overwhelming set of data files containing huge amounts of data, which is quite difficult to pre-process, separate, classify and correlate for interesting conclusions to be extracted. Modern machine learning, data mining and clustering techniques based on information theory, are needed to read and interpret the information contents buried in those large data sets. Independent Component Analysis method can be used to correct the data affected by corruption processes or to filter the uncorrectable one and then clustering methods can group similar genes or classify samples. In this paper a hybrid approach is used to obtain a two way unsupervised clustering for a corrected microarray data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we propose an image acquisition and processing methodology (framework) developed for performance in-field grapes and leaves detection and quantification, based on a six step methodology: 1) image segmentation through Fuzzy C-Means with Gustafson Kessel (FCM-GK) clustering; 2) obtaining of FCM-GK outputs (centroids) for acting as seeding for K-Means clustering; 3) Identification of the clusters generated by K-Means using a Support Vector Machine (SVM) classifier. 4) Performance of morphological operations over the grapes and leaves clusters in order to fill holes and to eliminate small pixels clusters; 5)Creation of a mosaic image by Scale-Invariant Feature Transform (SIFT) in order to avoid overlapping between images; 6) Calculation of the areas of leaves and grapes and finding of the centroids in the grape bunches. Image data are collected using a colour camera fixed to a mobile platform. This platform was developed to give a stabilized surface to guarantee that the images were acquired parallel to de vineyard rows. In this way, the platform avoids the distortion of the images that lead to poor estimation of the areas. Our preliminary results are promissory, although they still have shown that it is necessary to implement a camera stabilization system to avoid undesired camera movements, and also a parallel processing procedure in order to speed up the mosaicking process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machine learning techniques are used for extracting valuable knowledge from data. Nowa¬days, these techniques are becoming even more important due to the evolution in data ac¬quisition and storage, which is leading to data with different characteristics that must be exploited. Therefore, advances in data collection must be accompanied with advances in machine learning techniques to solve new challenges that might arise, on both academic and real applications. There are several machine learning techniques depending on both data characteristics and purpose. Unsupervised classification or clustering is one of the most known techniques when data lack of supervision (unlabeled data) and the aim is to discover data groups (clusters) according to their similarity. On the other hand, supervised classification needs data with supervision (labeled data) and its aim is to make predictions about labels of new data. The presence of data labels is a very important characteristic that guides not only the learning task but also other related tasks such as validation. When only some of the available data are labeled whereas the others remain unlabeled (partially labeled data), neither clustering nor supervised classification can be used. This scenario, which is becoming common nowadays because of labeling process ignorance or cost, is tackled with semi-supervised learning techniques. This thesis focuses on the branch of semi-supervised learning closest to clustering, i.e., to discover clusters using available labels as support to guide and improve the clustering process. Another important data characteristic, different from the presence of data labels, is the relevance or not of data features. Data are characterized by features, but it is possible that not all of them are relevant, or equally relevant, for the learning process. A recent clustering tendency, related to data relevance and called subspace clustering, claims that different clusters might be described by different feature subsets. This differs from traditional solutions to data relevance problem, where a single feature subset (usually the complete set of original features) is found and used to perform the clustering process. The proximity of this work to clustering leads to the first goal of this thesis. As commented above, clustering validation is a difficult task due to the absence of data labels. Although there are many indices that can be used to assess the quality of clustering solutions, these validations depend on clustering algorithms and data characteristics. Hence, in the first goal three known clustering algorithms are used to cluster data with outliers and noise, to critically study how some of the most known validation indices behave. The main goal of this work is however to combine semi-supervised clustering with subspace clustering to obtain clustering solutions that can be correctly validated by using either known indices or expert opinions. Two different algorithms are proposed from different points of view to discover clusters characterized by different subspaces. For the first algorithm, available data labels are used for searching for subspaces firstly, before searching for clusters. This algorithm assigns each instance to only one cluster (hard clustering) and is based on mapping known labels to subspaces using supervised classification techniques. Subspaces are then used to find clusters using traditional clustering techniques. The second algorithm uses available data labels to search for subspaces and clusters at the same time in an iterative process. This algorithm assigns each instance to each cluster based on a membership probability (soft clustering) and is based on integrating known labels and the search for subspaces into a model-based clustering approach. The different proposals are tested using different real and synthetic databases, and comparisons to other methods are also included when appropriate. Finally, as an example of real and current application, different machine learning tech¬niques, including one of the proposals of this work (the most sophisticated one) are applied to a task of one of the most challenging biological problems nowadays, the human brain model¬ing. Specifically, expert neuroscientists do not agree with a neuron classification for the brain cortex, which makes impossible not only any modeling attempt but also the day-to-day work without a common way to name neurons. Therefore, machine learning techniques may help to get an accepted solution to this problem, which can be an important milestone for future research in neuroscience. Resumen Las técnicas de aprendizaje automático se usan para extraer información valiosa de datos. Hoy en día, la importancia de estas técnicas está siendo incluso mayor, debido a que la evolución en la adquisición y almacenamiento de datos está llevando a datos con diferentes características que deben ser explotadas. Por lo tanto, los avances en la recolección de datos deben ir ligados a avances en las técnicas de aprendizaje automático para resolver nuevos retos que pueden aparecer, tanto en aplicaciones académicas como reales. Existen varias técnicas de aprendizaje automático dependiendo de las características de los datos y del propósito. La clasificación no supervisada o clustering es una de las técnicas más conocidas cuando los datos carecen de supervisión (datos sin etiqueta), siendo el objetivo descubrir nuevos grupos (agrupaciones) dependiendo de la similitud de los datos. Por otra parte, la clasificación supervisada necesita datos con supervisión (datos etiquetados) y su objetivo es realizar predicciones sobre las etiquetas de nuevos datos. La presencia de las etiquetas es una característica muy importante que guía no solo el aprendizaje sino también otras tareas relacionadas como la validación. Cuando solo algunos de los datos disponibles están etiquetados, mientras que el resto permanece sin etiqueta (datos parcialmente etiquetados), ni el clustering ni la clasificación supervisada se pueden utilizar. Este escenario, que está llegando a ser común hoy en día debido a la ignorancia o el coste del proceso de etiquetado, es abordado utilizando técnicas de aprendizaje semi-supervisadas. Esta tesis trata la rama del aprendizaje semi-supervisado más cercana al clustering, es decir, descubrir agrupaciones utilizando las etiquetas disponibles como apoyo para guiar y mejorar el proceso de clustering. Otra característica importante de los datos, distinta de la presencia de etiquetas, es la relevancia o no de los atributos de los datos. Los datos se caracterizan por atributos, pero es posible que no todos ellos sean relevantes, o igualmente relevantes, para el proceso de aprendizaje. Una tendencia reciente en clustering, relacionada con la relevancia de los datos y llamada clustering en subespacios, afirma que agrupaciones diferentes pueden estar descritas por subconjuntos de atributos diferentes. Esto difiere de las soluciones tradicionales para el problema de la relevancia de los datos, en las que se busca un único subconjunto de atributos (normalmente el conjunto original de atributos) y se utiliza para realizar el proceso de clustering. La cercanía de este trabajo con el clustering lleva al primer objetivo de la tesis. Como se ha comentado previamente, la validación en clustering es una tarea difícil debido a la ausencia de etiquetas. Aunque existen muchos índices que pueden usarse para evaluar la calidad de las soluciones de clustering, estas validaciones dependen de los algoritmos de clustering utilizados y de las características de los datos. Por lo tanto, en el primer objetivo tres conocidos algoritmos se usan para agrupar datos con valores atípicos y ruido para estudiar de forma crítica cómo se comportan algunos de los índices de validación más conocidos. El objetivo principal de este trabajo sin embargo es combinar clustering semi-supervisado con clustering en subespacios para obtener soluciones de clustering que puedan ser validadas de forma correcta utilizando índices conocidos u opiniones expertas. Se proponen dos algoritmos desde dos puntos de vista diferentes para descubrir agrupaciones caracterizadas por diferentes subespacios. Para el primer algoritmo, las etiquetas disponibles se usan para bus¬car en primer lugar los subespacios antes de buscar las agrupaciones. Este algoritmo asigna cada instancia a un único cluster (hard clustering) y se basa en mapear las etiquetas cono-cidas a subespacios utilizando técnicas de clasificación supervisada. El segundo algoritmo utiliza las etiquetas disponibles para buscar de forma simultánea los subespacios y las agru¬paciones en un proceso iterativo. Este algoritmo asigna cada instancia a cada cluster con una probabilidad de pertenencia (soft clustering) y se basa en integrar las etiquetas conocidas y la búsqueda en subespacios dentro de clustering basado en modelos. Las propuestas son probadas utilizando diferentes bases de datos reales y sintéticas, incluyendo comparaciones con otros métodos cuando resulten apropiadas. Finalmente, a modo de ejemplo de una aplicación real y actual, se aplican diferentes técnicas de aprendizaje automático, incluyendo una de las propuestas de este trabajo (la más sofisticada) a una tarea de uno de los problemas biológicos más desafiantes hoy en día, el modelado del cerebro humano. Específicamente, expertos neurocientíficos no se ponen de acuerdo en una clasificación de neuronas para la corteza cerebral, lo que imposibilita no sólo cualquier intento de modelado sino también el trabajo del día a día al no tener una forma estándar de llamar a las neuronas. Por lo tanto, las técnicas de aprendizaje automático pueden ayudar a conseguir una solución aceptada para este problema, lo cual puede ser un importante hito para investigaciones futuras en neurociencia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present two approaches to cluster dialogue-based information obtained by the speech understanding module and the dialogue manager of a spoken dialogue system. The purpose is to estimate a language model related to each cluster, and use them to dynamically modify the model of the speech recognizer at each dialogue turn. In the first approach we build the cluster tree using local decisions based on a Maximum Normalized Mutual Information criterion. In the second one we take global decisions, based on the optimization of the global perplexity of the combination of the cluster-related LMs. Our experiments show a relative reduction of the word error rate of 15.17%, which helps to improve the performance of the understanding and the dialogue manager modules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The area of Human-Machine Interface is growing fast due to its high importance in all technological systems. The basic idea behind designing human-machine interfaces is to enrich the communication with the technology in a natural and easy way. Gesture interfaces are a good example of transparent interfaces. Such interfaces must identify properly the action the user wants to perform, so the proper gesture recognition is of the highest importance. However, most of the systems based on gesture recognition use complex methods requiring high-resource devices. In this work, we propose to model gestures capturing their temporal properties, which significantly reduce storage requirements, and use clustering techniques, namely self-organizing maps and unsupervised genetic algorithm, for their classification. We further propose to train a certain number of algorithms with different parameters and combine their decision using majority voting in order to decrease the false positive rate. The main advantage of the approach is its simplicity, which enables the implementation using devices with limited resources, and therefore low cost. The testing results demonstrate its high potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes the results of an investigation aimed at the analysis methods used in the design of the protections against scour phenomenon on offshore wind farms in transitional waters, using medium and large diameter monopile type deep foundations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present two approaches to cluster dialogue-based information obtained by the speech understanding module and the dialogue manager of a spoken dialogue system. The purpose is to estimate a language model related to each cluster, and use them to dynamically modify the model of the speech recognizer at each dialogue turn. In the first approach we build the cluster tree using local decisions based on a Maximum Normalized Mutual Information criterion. In the second one we take global decisions, based on the optimization of the global perplexity of the combination of the cluster-related LMs. Our experiments show a relative reduction of the word error rate of 15.17%, which helps to improve the performance of the understanding and the dialogue manager modules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are a number of research and development activities that are exploring Time and Space Partition (TSP) to implement safe and secure flight software. This approach allows to execute different real-time applications with different levels of criticality in the same computer board. In order to do that, flight applications must be isolated from each other in the temporal and spatial domains. This paper presents the first results of a partitioning platform based on the Open Ravenscar Kernel (ORK+) and the XtratuM hypervisor. ORK+ is a small, reliable real-time kernel supporting the Ada Ravenscar Computational model that is central to the ASSERT development process. XtratuM supports multiple virtual machines, i.e. partitions, on a single computer and is being used in the Integrated Modular Avionics for Space study. ORK+ executes in an XtratuM partition enabling Ada applications to share the computer board with other applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer the following questions: 1. What is the best H-model form and geographic unit to include in biomass models to minimise site-level uncertainty in estimates of destructive biomass? 2. To what extent does including H estimates derived in (1) reduce uncertainty in biomass estimates across all 327 plots? 3. What effect does accounting for H have on plot- and continental-scale forest biomass estimates? The mean relative error in biomass estimates of destructively harvested trees when including H (mean 0.06), was half that when excluding H (mean 0.13). Power- andWeibull-H models provided the greatest reduction in uncertainty, with regional Weibull-H models preferred because they reduce uncertainty in smaller-diameter classes (?40 cm D) that store about one-third of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows that including H reduces errors from 41.8Mgha?1 (range 6.6 to 112.4) to 8.0Mgha?1 (?2.5 to 23.0). For all plots, aboveground live biomass was ?52.2 Mgha?1 (?82.0 to ?20.3 bootstrapped 95%CI), or 13%, lower when including H estimates, with the greatest relative reductions in estimated biomass in forests of the Brazilian Shield, east Africa, and Australia, and relatively little change in the Guiana Shield, central Africa and southeast Asia. Appreciably different stand structure was observed among regions across the tropical continents, with some storing significantly more biomass in small diameter stems, which affects selection of the best height models to reduce uncertainty and biomass reductions due to H. After accounting for variation in H, total biomass per hectare is greatest in Australia, the Guiana Shield, Asia, central and east Africa, and lowest in eastcentral Amazonia, W. Africa, W. Amazonia, and the Brazilian Shield (descending order). Thus, if tropical forests span 1668 million km2 and store 285 Pg C (estimate including H), then applying our regional relationships implies that carbon storage is overestimated by 35 PgC (31?39 bootstrapped 95%CI) if H is ignored, assuming that the sampled plots are an unbiased statistical representation of all tropical forest in terms of biomass and height factors. Our results show that tree H is an important allometric factor that needs to be included in future forest biomass estimates to reduce error in estimates of tropical carbon stocks and emissions due to deforestation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a novel fast random search clustering (RSC) algorithm for mixing matrix identification in multiple input multiple output (MIMO) linear blind inverse problems with sparse inputs. The proposed approach is based on the clustering of the observations around the directions given by the columns of the mixing matrix that occurs typically for sparse inputs. Exploiting this fact, the RSC algorithm proceeds by parameterizing the mixing matrix using hyperspherical coordinates, randomly selecting candidate basis vectors (i.e. clustering directions) from the observations, and accepting or rejecting them according to a binary hypothesis test based on the Neyman–Pearson criterion. The RSC algorithm is not tailored to any specific distribution for the sources, can deal with an arbitrary number of inputs and outputs (thus solving the difficult under-determined problem), and is applicable to both instantaneous and convolutive mixtures. Extensive simulations for synthetic and real data with different number of inputs and outputs, data size, sparsity factors of the inputs and signal to noise ratios confirm the good performance of the proposed approach under moderate/high signal to noise ratios. RESUMEN. Método de separación ciega de fuentes para señales dispersas basado en la identificación de la matriz de mezcla mediante técnicas de "clustering" aleatorio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of the effectiveness of the cognitive rehabilitation processes and the identification of cognitive profiles, in order to define comparable populations, is a controversial area, but concurrently it is strongly needed in order to improve therapies. There is limited evidence about cognitive rehabilitation efficacy. Many of the trials conclude that in spite of an apparent clinical good response, differences do not show statistical significance. The common feature in all these trials is heterogeneity among populations. In this situation, observational studies on very well controlled cohort of studies, together with innovative methods in knowledge extraction, could provide methodological insights for the design of more accurate comparative trials. Some correlation studies between neuropsychological tests and patients capacities have been carried out -1---2- and also correlation between tests and morphological changes in the brain -3-. The procedures efficacy depends on three main factors: the affectation profile, the scheduled tasks and the execution results. The relationship between them makes up the cognitive rehabilitation as a discipline, but its structure is not properly defined. In this work we present a clustering method used in Neuro Personal Trainer (NPT) to group patients into cognitive profiles using data mining techniques. The system uses these clusters to personalize treatments, using the patients assigned cluster to select which tasks are more suitable for its concrete needs, by comparing the results obtained in the past by patients with the same profile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many data streaming applications produces massive amounts of data that must be processed in a distributed fashion due to the resource limitation of a single machine. We propose a distributed data stream clustering protocol. Theoretical analysis shows preliminary results about the quality of discovered clustering. In addition, we present results about the ability to reduce the time complexity respect to the centralized approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En el presente trabajo se ha llevado a cabo un estudio de la biodiversidad del frijol común (Phaseolus vulgaris L.) en Honduras, que es el segundo de los cultivos de granos básicos en importancia. Dicho estudio se ha realizado mediante una caracterización agromorfológica, molecular y ecogeográfica en una selección de 300 accesiones conservadas en el banco de germoplasma ubicado en la Escuela Agrícola Panamericana (EAP) El Zamorano, y que se colectaron en 13 departamentos del país durante el periodo de 1990 a 1994. Estas accesiones fueron colectadas cuatro años antes del acontecimiento del huracán Mitch, el cual a su paso afectó al 96% del área total cultivable en su momento, lo cual nos hace considerar que la biodiversidad de razas locales (landraces) de frijol común existentes in situ fueron severamente afectadas. Los trabajos dirigidos a analizar la biodiversidad de razas locales de frijol común en Honduras son escasos, y este trabajo se constituye como el primero que incluye una amplia muestra a ser estudiada a través de una caracterización en tres aspectos complementarios (agromorfológico, molecular y ecogeográfico). Se evaluaron 32 caracteres agromorfológicos, 12 cuantitativos y 20 cualitativos, en distintas partes de la planta. Se establecieron las correlaciones entre los caracteres agromorfológicos y se elaboró un dendrograma con los mismos, en el que se formaron ocho grupos, en parte relacionados principalmente con los colores y tamaños de la semilla. Mediante el análisis de componentes principales se estudiaron los caracteres de más peso en cada uno de los tres primeros componentes. Asimismo, se estudiaron las correlaciones entre caracteres, siendo las más altas la longitud y anchura de la hoja, días a madurez y a cosecha y longitud y peso de semilla. Por otra parte, el mapa de diversidad agromorfológica mostró la existencia de tres zonas con mayor diversidad: en el oeste (en los departamentos de Santa Bárbara, Lempira y Copán), en el centro-norte (en los departamentos de Francisco Morazán, Yoro y Atlántida) y en el sur (en el departamento de El Paraíso y al sur de Francisco Morazán). Para la caracterización molecular partimos de 12 marcadores de tipo microsatélite, evaluados en 54 accesiones, que fueron elegidas por constituir grupos que compartían un mismo nombre local. Finalmente, se seleccionaron los cuatro microsatélites (BM53, GATS91, BM211 y PV-AT007) que resultaron ser más polimórficos e informativos para el análisis de las 300 accesiones, con los que se detectaron un total de 119 alelos (21 de ellos únicos o privados de accesión) y 256 patrones alélicos diferentes. Para estudiar la estructura y relaciones genéticas en las 300 accesiones se incluyeron en el análisis tres controles o accesiones de referencia, pertenecientes dos de ellas al acervo genético Andino y una al Mesoamericano. En el dendrograma se obtuvieron 25 grupos de accesiones con idénticas combinaciones de alelos. Al comparar este dendrograma con el de caracteres agromorfológicos se observaron diversos grupos con marcada similitud en ambos. Un total de 118 accesiones resultaron ser homogéneas y homocigóticas, a la vez que representativas del grupo de 300 accesiones, por lo que se analizaron con más detalle. El análisis de la estructura genética definió la formación de dos grupos, supuestamente relacionados con los acervos genéticos Andino (48) y Mesoamericano (61), y un reducido número de accesiones (9) que podrían tener un origen híbrido, debido a la existencia de un cierto grado de introgresión entre ambos acervos. La diferenciación genética entre ambos grupos fue del 13,3%. Asimismo, 66 de los 82 alelos detectados fueron privados de grupo, 30 del supuesto grupo Andino y 36 del Mesoamericano. Con relación al mapa de diversidad molecular, presentó una distribución bastante similar al de la diversidad agromorfológica, detectándose también las zonas de mayor diversidad genética en el oeste (en los departamentos de Lempira y Santa Bárbara), en el centro-norte (en los departamentos de Yoro y Atlántida) y en el sur (en el departamento de El Paraíso y al sur de Francisco Morazán). Para la caracterización ecogeográfica se seleccionaron variables de tipo bioclimático (2), geofísico (2) y edáfico (8), y mediante el método de agrupamiento de partición alrededor de los medoides, la combinación de los grupos con cada uno de los tres tipos de variables definió un total de 32 categorías ecogeográficas en el país, detectándose accesiones en 16 de ellas. La distribución de las accesiones previsiblemente esté relacionada con la existencia de condiciones más favorables al cultivo de frijol. En el mapa de diversidad ecogeográfica, nuevamente, se observaron varias zonas con alta diversidad tanto en el oeste, como en el centro-norte y en el sur del país. Como consecuencia del estudio realizado, se concluyó la existencia de una marcada biodiversidad en el material analizado, desde el punto de vista tanto agromorfológico como molecular. Por lo que resulta de gran importancia plantear la conservación de este patrimonio genético tanto ex situ, en bancos de germoplasma, como on farm, en las propias explotaciones de los agricultores del país, siempre que sea posible. ABSTRACT In the present work we have carried out a study of the biodiversity of the common bean (Phaseolus vulgaris L) in Honduras, which is the second of the basic grain crops in importance. This study was conducted through agro-morphological, molecular and ecogeographical characterization of a selection of 300 accessions conserved in the genebank located in the ‘Escuela Agrícola Panamericana (EAP) El Zamorano’ that were collected in 13 departments of the country during the 1990 to 1994 period. These accessions were collected four years before the occurrence of Mitch hurricane, which affected 96% of the total cultivable area at the time, which makes us to consider that the biodiversity of local landraces of common bean existing in situ were severely affected. The work aimed to analyze the biodiversity of local races of common bean in Honduras are scarce, and this work constitutes the first to include a large sample to be studied through a characterization on three complementary aspects (agromorphological, molecular and ecogeographical). Thirty two agromorphological characters, 12 quantitative and 20 qualitative, in various parts of the plant were evaluated. Correlations between agromorphological characters were established and a dendrogram with them was constructed, in which eight groups were formed, in part mainly related to the colors and sizes of the seeds. By principal component analysis the characters with more weight in each of the first three components were studied. Also, correlations between characters were studied, the highest of them being length and leaf width, days to maturity and harvest, and seed length and weight. Moreover, the map of agromorphological diversity showed the existence of three areas with more diversity: the west (departments of Santa Barbara, Copan and Lempira), the center-north (departments of Francisco Morazán, Yoro and Atlántida) and the south (department of El Paraiso and south of Francisco Morazán). For molecular characterization we started with 12 microsatellite markers, evaluated in 54 accessions, which were chosen because they formed groups that shared the same local name. Finally, four microsatellites (BM53, GATS91, BM211 and PV-AT007) were selected for the analysis of 300 accessions, since they were the most polymorphic and informative. They gave a total of 119 alleles (21 of them unique or private for the accession) and 256 different allelic patterns. To study the structure and genetic relationships in the 300 accessions, three controls or accessions of reference were included in the analysis: two of them belonging to the Andean gene pool and one to the Mesoamerican. In the dendrogram, 25 accession groups with identical allele combinations were obtained. Comparing this dendrogram to the obtained with agromorphological characters, several groups with marked similarity in both were observed. A total of 118 accessions were homozygous and homogeneous, while representing the group of 300 accessions, therefore they were analyzed in more detail. The analysis of the genetic structure defined the formation of two groups, supposedly related to the Andean (48) and the Mesoamerican (61) gene pools, and a small number of accessions (9) which may have a hybrid origin, due to the existence of some degree of introgression between both gene pools. Genetic differentiation between both groups was 13.3%. Also, 66 of the 82 detected alleles were private or unique for the group, 30 of the supposed Andean group and 36 of the Mesoamerican. With relation to the map of molecular diversity, it showed a quite similar distribution to the agromorphological, also detecting the areas of greatest genetic diversity in the west (departments of Lempira and Santa Bárbara), in the center-north (departments Atlántida and Yoro) and in the south (departments of El Paraíso and south of Francisco Morazán). For the ecogeographical characterization, bioclimatic (2), geophysical (2) and edaphic (8) variables were selected, and by the method of clustering partition around the medoids, the combination of the groups to each of the three types of variables defined a total of 32 ecogeographical categories in the country, having accessions in 16 of them. The distribution of accessions is likely related to the existence of more favorable conditions for the cultivation of beans. The map of ecogeographical diversity, again, several areas with high diversity both in the west and in the center-north and in the south of the country were observed. As a result of study, the existence of marked biodiversity in the analyzed material was concluded, both from the agromorphological and from the molecular point of view. Consequently it is very important to propose the conservation of this genetic heritage both ex situ, in genebanks, as on farm, in the holdings of the farmers of the country, whenever possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desentrañar el funcionamiento del cerebro es uno de los principales desafíos a los que se enfrenta la ciencia actual. Un área de estudio que ha despertado muchas expectativas e interés es el análisis de la estructura cortical desde el punto de vista morfológico, de manera que se cree una simulación del cerebro a nivel molecular. Con ello se espera poder profundizar en el estudio de numerosas enfermedades neurológicas y patológicas. Con el desarrollo de este proyecto se persigue el estudio del soma y de las espinas desde el punto de vista de la neuromorfología teórica. Es común en el estado del arte que en el análisis de las características morfológicas de una neurona en tres dimensiones el soma sea ignorado o, en el mejor de los casos, que sea sustituido por una simple esfera. De hecho, el concepto de soma resulta abstracto porque no se dispone de una dfinición estricta y robusta que especifique exactamente donde finaliza y comienzan las dendritas. En este proyecto se alcanza por primera vez una definición matemática de soma para determinar qué es el soma. Con el fin de simular somas se ahonda en los atributos utilizados en el estado del arte. Estas propiedades, de índole genérica, no especifican una morfología única. Es por ello que se propone un método que agrupe propiedades locales y globales de la morfología. En disposición de las características se procede con la categorización del cuerpo celular en distintas clases a partir de un nuevo subtipo de red bayesiana dinámica adaptada al espacio. Con ello se discute la existencia de distintas clases de somas y se descubren las diferencias entre los somas piramidales de distintas capas del cerebro. A partir del modelo matemático se simulan por primera vez somas virtuales. Algunas morfologías de espinas han sido atribuidas a ciertos comportamientos cognitivos. Por ello resulta de interés dictaminar las clases existentes y relacionarlas con funciones de la actividad cerebral. La clasificación más extendida (Peters y Kaiserman-Abramof, 1970) presenta una definición ambigua y subjetiva dependiente de la interpretación de cada individuo y por tanto discutible. Este estudio se sustenta en un conjunto de descriptores extraídos mediante una técnica de análisis topológico local para representaciones 3D. Sobre estos datos se trata de alcanzar el conjunto de clases más adecuado en el que agrupar las espinas así como de describir cada grupo mediante reglas unívocas. A partir de los resultados, se discute la existencia de un continuo de espinas y las propiedades que caracterizan a cada subtipo de espina. ---ABSTRACT---Unravel how the brain works is one of the main challenges faced by current science. A field of study which has aroused great expectations and interest is the analysis of the cortical structure from a morphological point of view, so that a molecular level simulation of the brain is achieved. This is expected to deepen the study of many neurological and pathological diseases. This project seeks the study of the soma and spines from the theoretical neuromorphology point of view. In the state of the art it is common that when it comes to analyze the morphological characteristics of a three dimension neuron the soma is ignored or, in the best case, it is replaced by a simple sphere. In fact, the concept of soma is abstract because there is not a robust and strict definition on exactly where it ends and dendrites begin. In this project a mathematical definition is reached for the first time to determine what a soma is. With the aim to simulate somas the atributes applied in the state of the art are studied. These properties, generic in nature, do not specify a unique morphology. It is why it was proposed a method to group local and global morphology properties. In arrangement of the characteristics it was proceed with the categorization of the celular body into diferent classes by using a new subtype of dynamic Bayesian network adapted to space. From the result the existance of different classes of somas and diferences among pyramidal somas from distinct brain layers are discovered. From the mathematical model virtual somas were simulated for the first time. Some morphologies of spines have been attributed to certain cognitive behaviours. For this reason it is interesting to rule the existent classes and to relate them with their functions in the brain activity. The most extended classification (Peters y Kaiserman-Abramof, 1970) presents an ambiguous and subjective definition that relies on the interpretation of each individual and consequently it is arguable. This study was based on the set of descriptors extracted from a local topological analysis technique for 3D representations. On these data it was tried to reach the most suitable set of classes to group the spines as well as to describe each cluster by unambiguous rules. From these results, the existance of a continuum of spines and the properties that characterize each spine subtype were discussed .