963 resultados para hard rocks
Resumo:
The objective of the present review was to summarize the evidence available on the temporal sequence of hard and soft tissue healing around titanium dental implants in animal models and in humans. A search was undertaken to find animal and human studies reporting on the temporal dynamics of hard and soft tissue integration of titanium dental implants. Moreover, the influence of implant surface roughness and chemistry on the molecular mechanisms associated with osseointegration was also investigated. The findings indicated that the integration of titanium dental implants into hard and soft tissue represents the result of a complex cascade of biological events initiated by the surgical intervention. Implant placement into alveolar bone induces a cascade of healing events starting with clot formation and continuing with the maturation of bone in contact with the implant surface. From a genetic point of view, osseointegration is associated with a decrease in inflammation and an increase in osteogenesis-, angiogenesis- and neurogenesis-associated gene expression during the early stages of wound healing. The attachment and maturation of the soft tissue complex (i.e. epithelium and connective tissue) to implants becomes established 6-8 weeks following surgery. Based on the findings of the present review it can be concluded that improved understanding of the mechanisms associated with osseointegration will provide leads and targets for strategies aimed at enhancing the clinical performance of titanium dental implants.
Resumo:
Geological site characterisation programmes typically rely on drill cores for direct information on subsurface rocks. However, porosity, transport properties and porewater composition measured on drill cores can deviate from in-situ values due to two main artefacts caused by drilling and sample recovery: (1) mechanical disruption that increases porosity and (2) contamination of the porewater by drilling fluid. We investigated the effect and magnitude of these perturbations on large drill core samples (12–20 cm long, 5 cmdiameter) of high-grade, granitic gneisses obtained from 350 to 600 m depth in a borehole on Olkiluoto Island (SW Finland). The drilling fluid was traced with sodium–iodide. By combining out-diffusion experiments, gravimetry, UV-microscopy and iodide mass balance calculations, we successfully quantified the magnitudes of the artefacts: 2–6% increase in porosity relative to the bulk connected porosity and 0.9 to 8.9 vol.% contamination by drilling fluid. The spatial distribution of the drilling-induced perturbations was revealed by numerical simulations of 2D diffusion matched to the experimental data. This showed that the rims of the samples have a mechanically disrupted zone 0.04 to 0.22 cm wide, characterised by faster transport properties compared to the undisturbed centre (1.8 to 7.7 times higher pore diffusion coefficient). Chemical contamination was shown to affect an even wider zone in all samples, ranging from 0.15 to 0.60 cm, inwhich iodide enrichmentwas up to 180 mg/kgwater, compared to 0.5 mg/kgwater in the uncontaminated centre. For all samples in the present case study, it turned out that the magnitude of the artefacts caused by drilling and sample recovery is so small that no correction is required for their effects. Therefore, the standard laboratory measurements of porosity, transport properties and porewater composition can be taken as valid in-situ estimates. However, it is clear that the magnitudes strongly depend on site- and drilling-specific factors and therefore our results cannot be transferred simply to other locations. We recommend the approach presented in this study as a route to obtain reliable values in future drilling campaigns aimed at characterising in-situ bedrock properties.
Resumo:
The 39Ar-40Ar technique is often used to date the metamorphic evolution of basement rocks. The present review article examines systematic aspects of the K-Ar decay system in different mineral chronometers frequently found in mono- and polymetamorphic basements (amphibole, biotite, muscovite/phengite, K-feldspar). A key observation is that the measured dissolution rate of silicates in aqueous fluids is many orders of magnitude faster, and has a much lower activation energy, than the rate of Fickian diffusion of Ar. The effects of this inequality are patchy age zonations, very much like those observed in many U-Pb chronometers, unaccompanied by intra-crystalline bell¬shaped Ar loss profiles. Recognizing the importance of the respective rate constants in field situations leads to re-evaluating the ages and the interpretive paradigms in classic examples such as the Central Alpine "Lepontine" amphibolite event and the Western Alpine eclogitic event.
Resumo:
Biodegradable magnesium plate/screw osteosynthesis systems were implanted on the frontal bone of adult miniature pigs. The chosen implant geometries were based on existing titanium systems used for the treatment of facial fractures. The aim of this study was to evaluate the in vivo degradation and tissue response of the magnesium alloy WE43 with and without a plasma electrolytic surface coating. Of 14 animals, 6 received magnesium implants with surface modification (coated), 6 without surface modification (uncoated), and 2 titanium implants. Radiological examination of the skull was performed at 1, 4, and 8 weeks post-implantation. After euthanasia at 12 and 24 weeks, X-ray, computed tomography, and microfocus computed tomography analyses and histological and histomorphological examinations of the bone/implant blocks were performed. The results showed a good tolerance of the plate/screw system without wound healing disturbance. In the radiological examination, gas pocket formation was found mainly around the uncoated plates 4 weeks after surgery. The micro-CT and histological analyses showed significantly lower corrosion rates and increased bone density and bone implant contact area around the coated screws compared to the uncoated screws at both endpoints. This study shows promising results for the further development of coated magnesium implants for the osteosynthesis of the facial skeleton.
Resumo:
The southwestern Tianshan (China) metamorphic belt records high-pressure (HP) to ultrahigh-pressure (UHP) conditions corresponding to a cold oceanic subduction-zone setting. Serpentinites enclosing retrogressed eclogite and rodingite occur as lenses within metapelites in the UHP unit, which also hosts coesite-bearing eclogites. Based on the petrology and petrography of these serpentinites, five events are recognized: (1) formation of a wehrlite–harzburgite–dunite association in the mantle; (2) retrograde metamorphism and partial hydration during exhumation of the mantle rocks close to the seafloor; (3) oceanic metamorphism leading to the first serpentinization and rodingitization; (4) UHP metamorphism during subduction; (5) retrograde metamorphism during exhumation together with a second serpentinization. The peak metamorphic mineral assemblage of the serpentinized wehrlite comprises Ti-chondrodite + olivine + antigorite + chlorite + magnetite + brucite. A computed pseudosection for this serpentinized wehrlite shows that the Al content in antigorite is mostly sensititive to temperature but can also be used to constrain pressure. The average XAl = 0·204 ± 0·026 of antigorite (XAl = Al (a.p.f.u.)/8, where Al is in atoms per formula unit for a structural formula M48T34O85(OH)62, and M and T are octahedral and tetrahedral sites, respectively) included in Ti-chondrodite and average XAl = 0·203 ± 0·019 of antigorite in the matrix result in a well-constrained peak metamorphic temperature of 510–530°C. Peak pressures are less precisely constrained at 37 ± 7 kbar. The Tianshan serpentinites thus record UHP metamorphic conditions and represent the deepest subducted serpentinites discovered so far. The retrograde evolution occurs within the stability field of brucite + antigorite + olivine + chlorite and formation of Ti-clinohumite at the expense of Ti-chondrodite has been observed, suggesting isothermal decompression. The resulting P–T path is in excellent agreement with the metamorphic evolution of country rocks, indicating that the UHP unit in Tianshan was subducted and exhumed as a coherent block. To refine the metamorphic path of the ultramafic rocks, we have investigated the stability fields of Ti-chondrodite and Ti-clinohumite using piston-cylinder experiments. A total of 11 experiments were conducted at 25–55 kbar and 600–750°C in a F-free natural system. Combined with previous experiments and information from natural rocks we constructed a petrogenetic grid for the stability of Ti-chondrodite and Ti-clinohumite in F-free peridotite compositions. The formation of Ti-chondrodite in serpentinites requires a minimum pressure of about 26 kbar, whereas in Ti-rich systems it can form at considerably lower pressures. A key finding is that at UHP conditions, F-free Ti-chondrodite or Ti-clinohumite breaks down in the presence of orthopyroxene between 700 and 750°C, at temperatures that are significantly lower than those of the terminal breakdown reactions of these humite minerals. These breakdown reactions are an additional source of fluid during prograde subduction of serpentinites.
Resumo:
The Zr-in-rutile geothermometer is potentially a widely applicable tool to estimate peak metamorphic temperatures in rocks from diverse geological settings. In order to evaluate its usefulness and reliability to record and preserve high temperatures in granulite facies rocks, rutile from UHT rocks was investigated to assess different mechanisms of Zr (re-)distribution following cooling from high temperature. Granulite facies paragneisses from the lowermost part of the Ivrea Zone, Italy, incorporated as thin sheets into the extensive basaltic body of the Mafic Complex were selected for this study. The results show that Zr-in-rutile thermometry, if properly applied, is well suited to identify and study UHT terranes as it preserves a record of temperatures up to 1190 °C, although the thermometer is susceptible to partial post-peak metamorphic resetting by Zr diffusion. Texturally homogeneous rutile grains preserve Zr concentrations corresponding to temperatures of prograde rutile growth. Diverse rutile textures and relationships between some rutile host grains and included or adjacent Zr-bearing phases bear testimony to varying mechanisms of partial redistribution and resetting of Zr in rutile during cooling and link Zr-in-rutile temperatures to different steps of the metamorphic evolution. Rutile grains that equilibrated their Zr concentrations at temperatures above 1070 °C (i.e. 1.1 wt% Zr) could not retain all Zr in the rutile structure during cooling and exsolved baddeleyite (ZrO2). By subsequent reaction of baddeleyite exsolution lamellae with SiO2, zircon needles formed before the system finally closed at 650–700 °C without significant net loss of Zr from the whole host rutile grain. By reintegration of zircon exsolution needles, peak metamorphic temperatures of up to 1190 °C are derived for the studied rocks, which demonstrates the suitability of this solution thermometer to record UHT conditions and also confirms the extraordinary geological setting of the lowermost part of the Ivrea Zone.
Resumo:
Despite emphasis on preparing teachers as leaders, teacher educators realize that the transition of classroom practitioners into school leaders is fraught with many obstacles. This session addresses some of these obstacles, describes strategies and opportunities that we have used in our graduate master’s degree programs for teachers that support professionals as they make this change. The session will present evidence on the results of our efforts in terms of teachers’ performances within their programs and in the field after they graduate.
Resumo:
Signatur des Originals: S 36/G03135
Resumo:
Keynote address presented by Roger Friedman, PhD, LCSW at the Family Preservation Institute Annual Conference, San Antonio, Texas, September 9, 2004. Looking at Language and Concepts Looking closely at certain language that we use helps us understand how we think about our work and our world—and ultimately, it helps us understand ourselves better. The term "village " as used in the title of the paper and in many of our professional conversations is worthy of such an inquiry
Resumo:
Bottom morphology of the Jan Mayen transform fracture zone and rock chemistry data show that petrological and chemical specific features of igneous rocks can result from higher permeability of the transform fracture zone and deeper penetration of ocean water into the lithosphere in comparison with rift zones of the Kolbeinsey and Mohn's mid-ocean ridges. Age of alkaline magmatism of the Jan Mayen fracture zone is similar to that of rift zones due to palingenesis of metamorphosed and hydrated mantle and crustal rocks.
Resumo:
Sulfur isotope ratios have been determined in 19 selected igneous rocks from Leg 126. The d34S of the analyzed rocks ranges from -0.1 â to +19.60 â. The overall variation in sulfur isotope composition of the rocks is caused by varying degrees of seawater alteration. Most of the samples are altered by seawater and only five of them are considered to have maintained their magmatic sulfur isotope composition. These samples are all from the backarc sites and have d34S values varying from +0.2 â to +1.6 â, of which the high d34S values suggest that the earliest magmas in the rift are more arc-like in their sulfur isotope composition than the later magmas. The d34S values from the forearc sites are similar to or heavier than the sulfur isotope composition of the present arc.