981 resultados para ground-state


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diffuse reflectance and laser-induced techniques were used to study photochemical and photophysical processes of benzil adsorbed on two solid powdered supports, microcrystalline cellulose and beta-cyclodextrin. In both substrates, a distribution of ground-state benzil conformers exists, largely dominated by skew conformations where the carbonyl groups are twisted one to the other. Room temperature phosphorescence was observed in air-equilibrated samples in both cases. The decay times vary greatly and the largest lifetime was obtained for benzil/beta-cyclodextrin, showing that this host's cavity accommodates benzil well, enhancing its room temperature phosphorescence. Triplet - triplet absorption of benzil entrapped in cellulose was detected and benzil ketyl radical formation also occurred. With benzil included into beta-cyclodextrin, and following laser excitation, benzoyl radicals were detected on the millisecond timescale. Product analysis and identification of laser-irradiated benzil samples in the two hosts clearly showed that the main degradation photoproducts were benzoic acid and benzaldehyde. The main differences were a larger benzoic acid/benzaldehyde ratio in the case of cellulose and the formation of benzyl alcohol in this support.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The photochemistry of 4-chlorophenol (4-CP) was studied on silica and cellulose, using time-resolved diffuse reflectance techniques and product degradation analysis. The results have shown that the photochemistry of 4-CP depends on the support, on the concentration, and also on the sample preparation method. Transient absorption and photoproduct results can be understood by assuming the formation of the carbene 4-oxocyclohexa-2,5-dienylidene in both supports. On cellulose, at concentrations lower than 10 mumol g(-1), the carbene leads to the unsubstituted phenoxyl radical, and phenol is the main degradation product. At higher concentrations a new transient resulting from phenoxyl radicals coupling was also observed, and dihydroxybiphenyls are also formed. The reaction of the carbene with ground-state 4-CP was also detected through the formation of 5-chloro-2,4'-dihydroxybiphenyl. 4-Chlorophenoxyl radical and degradations products resulting from its coupling were also detected. Oxygen has little effect on the photochemistry of 4-CP on cellulose. On silica the transient benzoquinone O-oxide was formed in the presence of oxygen. Benzoquinone and hydroquinone are the main degradation products. In well-dried samples the formation of hydroquinone is reduced. At higher concentrations the same products as detected on cellulose were observed. 4-CP undergoes slow photochemical decomposition under solar radiation in both supports. The same main degradation products were observed in these conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diffuse reflectance and laser-induced techniques were used to access photochemical and photophysical processes of benzil in solid supports, namely p-tert-butylcalix[n]arenes with n = 4, 6, and 8. A comparative study was performed using these results and those obtained with another electronically inert support, silicalite, which is a hydrophobic zeolite. In the latter substrate, ground-state benzil has the two carbonyl groups in an s-trans planar conformation while in the calixarenes a distribution of conformers exists, largely dominated by skew conformations where the carbonyl groups are twisted one to the other. In all substrates, room-temperature phosphorescence was obtained in air-equilibrated samples. The decay times vary greatly and the largest lifetime was obtained for benzil/p-tert-butylcalix[6]arene, showing that this host cavity well accommodates benzil, enhancing its room-temperature phosphorescence. p-tert-Butylcalix[6] and [8]arene molecules provide larger hydrophobic cavities than silicalite, and inclusion complexes are formed with these hosts and benzil as guest; p-tert-butylcalix[4]arene does not include benzil. This probe is deposited outside the calix[41 cavity, in the form of microcrystals. Triplet-triplet absorption of benzil was detected in all cases and is predominant in the silicalite channel inclusion case. Benzil ketyl radical formation occurs with inclusion in calix[6]arene and calix[8]arene. In the three cases, benzoyl radical was detected at long times (in the millisecond time scale). Product analysis and identification clearly show that the main detected degradation photoproducts in all substrates are benzoyl radical derivatives. Calix[6] and [8]arenes are able to supply hydrogen atoms that allow also another reaction, the reduction to benzoin through benzil ketyl radical formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents studies of the role of disorder in non-equilibrium quantum systems. The quantum states relevant to dynamics in these systems are very different from the ground state of the Hamiltonian. Two distinct systems are studied, (i) periodically driven Hamiltonians in two dimensions, and (ii) electrons in a one-dimensional lattice with power-law decaying hopping amplitudes. In the first system, the novel phases that are induced from the interplay of periodic driving, topology and disorder are studied. In the second system, the Anderson transition in all the eigenstates of the Hamiltonian are studied, as a function of the power-law exponent of the hopping amplitude.

In periodically driven systems the study focuses on the effect of disorder in the nature of the topology of the steady states. First, we investigate the robustness to disorder of Floquet topological insulators (FTIs) occurring in semiconductor quantum wells. Such FTIs are generated by resonantly driving a transition between the valence and conduction band. We show that when disorder is added, the topological nature of such FTIs persists as long as there is a gap at the resonant quasienergy. For strong enough disorder, this gap closes and all the states become localized as the system undergoes a transition to a trivial insulator.

Interestingly, the effects of disorder are not necessarily adverse, disorder can also induce a transition from a trivial to a topological system, thereby establishing a Floquet Topological Anderson Insulator (FTAI). Such a state would be a dynamical realization of the topological Anderson insulator. We identify the conditions on the driving field necessary for observing such a transition. We realize such a disorder induced topological Floquet spectrum in the driven honeycomb lattice and quantum well models.

Finally, we show that two-dimensional periodically driven quantum systems with spatial disorder admit a unique topological phase, which we call the anomalous Floquet-Anderson insulator (AFAI). The AFAI is characterized by a quasienergy spectrum featuring chiral edge modes coexisting with a fully localized bulk. Such a spectrum is impossible for a time-independent, local Hamiltonian. These unique characteristics of the AFAI give rise to a new topologically protected nonequilibrium transport phenomenon: quantized, yet nonadiabatic, charge pumping. We identify the topological invariants that distinguish the AFAI from a trivial, fully localized phase, and show that the two phases are separated by a phase transition.

The thesis also present the study of disordered systems using Wegner's Flow equations. The Flow Equation Method was proposed as a technique for studying excited states in an interacting system in one dimension. We apply this method to a one-dimensional tight binding problem with power-law decaying hoppings. This model presents a transition as a function of the exponent of the decay. It is shown that the the entire phase diagram, i.e. the delocalized, critical and localized phases in these systems can be studied using this technique. Based on this technique, we develop a strong-bond renormalization group that procedure where we solve the Flow Equations iteratively. This renormalization group approach provides a new framework to study the transition in this system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Graphene as a carbon monolayer has attracted extensive research interest in recent years. My research work within the frame of density functional theory has suggested that positioning graphene in proximity to h-BN may induce a finite energy gap in graphene, which is important for device applications. For an AB-stacked graphene/BN bilayer, a finite gap is induced at the equilibrium configuration. This induced gap shows a linear relationship with the applied strain. For a graphene/BN/graphene trilayer, a negligible gap is predicted in the ground state due to the overall symmetry of the system. When an electric field is applied, a tunable gap can be obtained for both AAA and ABA stackings. Enhanced tunneling current in the AA-stacked bilayer nanoribbons is predicted compared to either single-layer or AB-stacked bilayer nanoribbons. Interlayer separation between the nanoribbons is shown to have a profound impact on the conducting features. The effect of boron or nitrogen doping on the electronic transport properties of C60 fullerene is studied. The BC59 fullerene exhibits a considerably higher current than the pristine or nitrogen doped fullerenes beyond the applied bias of 1 V, suggesting it can be an effective semiconductor in p-type devices. The interaction between nucleic acid bases - adenine (A), guanine (G), cytosine (C), thymine (T) and uracil (U) - and a hydrogen-passivated silicon nanowire (SiNW) is investigated. The binding energy of the bases with the SiNW shows the order: G > A~C~T~U. This suggests that the interaction strength of a hydrogen passivated SiNW with the nucleic acid bases is nearly the same-G being an exception. The nature of the interaction is suggested to be electrostatic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A turn on of a quantum dot (QD) semiconductor laser simultaneously operating at the ground state (GS) and excited state (ES) is investigated both experimentally and theoretically. We find experimentally that the slow passage through the two successive laser thresholds may lead to significant delays in the GS and ES turn ons. The difference between the turn-on times is measured as a function of the pump rate of change and reveals no clear power law. This has motivated a detailed analysis of rate equations appropriate for two-state lasing QD lasers. We find that the effective time of the GS turn on follows an -1/2 power law provided that the rate of change is not too small. The effective time of the ES transition follows an -1 power law, but its first order correction in ln is numerically significant. The two turn ons result from different physical mechanisms. The delay of the GS transition strongly depends on the slow growth of the dot population, whereas the ES transition only depends on the time needed to leave a repellent steady state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have carried out first-principles spin polarized calculations to obtain comprehensive information regarding the structural, magnetic, and electronic properties of the Mn-doped GaSb compound with dopant concentrations: x¼0.062, 0.083, 0.125, 0.25, and 0.50. The plane-wave pseudopotential method was used in order to calculate total energies and electronic structures. It was found that the MnGa substitution is the most stable configuration with a formation energy of 1.60 eV/Mn-atom. The calculated density of states shows that the half-metallic ferromagnetism is energetically stable for all dopant concentrations with a total magnetization of about 4.0 lB/Mn-atom. The results indicate that the magnetic ground state originates from the strong hybridization between Mn-d and Sb-p states, which agree with previous studies on Mn-doped wide gap semiconductors. This study gives new clues to the fabrication of diluted magnetic semiconductors

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The emergence of hydrodynamic features in off-equilibrium (1 + 1)-dimensional integrable quantum systems has been the object of increasing attention in recent years. In this Master Thesis, we combine Thermodynamic Bethe Ansatz (TBA) techniques for finite-temperature quantum field theories with the Generalized Hydrodynamics (GHD) picture to provide a theoretical and numerical analysis of Zamolodchikov’s staircase model both at thermal equilibrium and in inhomogeneous generalized Gibbs ensembles. The staircase model is a diagonal (1 + 1)-dimensional integrable scattering theory with the remarkable property of roaming between infinitely many critical points when moving along a renormalization group trajectory. Namely, the finite-temperature dimensionless ground-state energy of the system approaches the central charges of all the minimal unitary conformal field theories (CFTs) M_p as the temperature varies. Within the GHD framework we develop a detailed study of the staircase model’s hydrodynamics and compare its quite surprising features to those displayed by a class of non-diagonal massless models flowing between adjacent points in the M_p series. Finally, employing both TBA and GHD techniques, we generalize to higher-spin local and quasi-local conserved charges the results obtained by B. Doyon and D. Bernard [1] for the steady-state energy current in off-equilibrium conformal field theories.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Small polarons (SP) have been thoroughly investigated in 3d transition metal oxides and they have been found to play a crucial role in physical phenomena such as charge transport, colossal magnetoresistance and surface reactivity. However, our knowledge about these quasi-particles in 5d systems remains very limited, since the more delocalised nature of the 5d orbitals reduces the strength of the Electronic Correlation (EC), making SP formation in these compounds rather unexpected. Nevertheless, the Spin-Orbit coupled Dirac-Mott insulator Ba2NaOsO6 (BNOO) represents a good candidate for enabling polaron formation in a relativistic background, due to the relatively large EC (U ∼ 3 eV) and Jahn-Teller activity. Moreover, anomalous peaks in Nuclear Magnetic Resonance (NMR) spectroscopy experiments suggest the presence of thermally activated SP dynamics when BNOO is doped with Ca atoms. We investigate SP formation in BNOO both from an electronic and structural point of view by means of fully relativistic first principles calculations. Our numerical simulations predict a stable SP ground state and agree on the value of 810 K for the dynamical process peak found by NMR experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molecular materials are made by the assembly of specifically designed molecules to obtain bulk structures with desired solid-state properties, enabling the development of materials with tunable chemical and physical properties. These properties result from the interplay of intra-molecular constituents and weak intermolecular interactions. Thus, small changes in individual molecular and electronic structure can substantially change the properties of the material in bulk. The purpose of this dissertation is, thus, to discuss and to contribute to the structure-property relationships governing the electronic, optical and charge transport properties of organic molecular materials through theoretical and computational studies. In particular, the main focus is on the interplay of intra-molecular properties and inter-molecular interactions in organic molecular materials. In my three-years of research activity, I have focused on three major areas: 1) the investigation of isolated-molecule properties for the class of conjugated chromophores displaying diradical character which are building blocks for promising functional materials; 2) the determination of intra- and intermolecular parameters governing charge transport in molecular materials and, 3) the development and application of diabatization procedures for the analysis of exciton states in molecular aggregates. The properties of diradicaloids are extensively studied both regarding their ground state (diradical character, aromatic vs quinoidal structures, spin dynamics, etc.) and the low-lying singlet excited states including the elusive double-exciton state. The efficiency of charge transport, for specific classes of organic semiconductors (including diradicaloids), is investigated by combining the effects of intra-molecular reorganization energy, inter-molecular electronic coupling and crystal packing. Finally, protocols aimed at unravelling the nature of exciton states are introduced and applied to different molecular aggregates. The role of intermolecular interactions and charge transfer contributions in determining the exciton state character and in modulating the H- to J- aggregation is also highlighted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a new quantum description for the Oppenheimer-Snyder model of gravitational collapse of a ball of dust. Starting from the geodesic equation for dust in spherical symmetry, we introduce a time-independent Schrödinger equation for the radius of the ball. The resulting spectrum is similar to that of the Hydrogen atom and Newtonian gravity. However, the non-linearity of General Relativity implies that the ground state is characterised by a principal quantum number proportional to the square of the ADM mass of the dust. For a ball with ADM mass much larger than the Planck scale, the collapse is therefore expected to end in a macroscopically large core and the singularity predicted by General Relativity is avoided. Mathematical properties of the spectrum are investigated and the ground state is found to have support essentially inside the gravitational radius, which makes it a quantum model for the matter core of Black Holes. In fact, the scaling of the ADM mass with the principal quantum number agrees with the Bekenstein area law and the corpuscular model of Black Holes. Finally, the uncertainty on the size of the ground state is interpreted within the framework of an Uncertainty Principle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This issue review provides an update on the proposed sale of state land as defined in Senate File 2088, Government Reorganization and Efficiency Act, section 8.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

the thesis entitled “Ground and Excited State Electron Transfer Reaction Between a few Anthracene Appended Tertiary Amines and Suitable Electron Acceptors” portrays our attempts to explore the solvent, concentration and temperature effect of the reaction between a few (anthracen-9- yl)methanamines with electron acceptors like DMAD, DBA and DBE. We have also studied the effect of solvent and percentage fluorescence quenching in the photoinduced electron transfer reactions of these ‘donor-spacer-acceptor’ systems. Finally we look in to the intramolecular electron transfer reactions of a few tertiary amine appended dibenzobarrelenes and bisdibenzobarrelenes

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An experimental technique based on a scheme of vibrationally mediated photodissociation has been developed and applied to the spectroscopic study of highly excited vibrational states in HCN, with energies between 29 000 and 30 000 cm(-1). The technique consists of four sequential steps: in the first one, a high power laser is used to vibrationally excite the sample to an intermediate state, typically (0,0,4), the nu(3) mode being approximately equivalent to the C-H stretching vibration. Then a second laser is used to search for transitions between this intermediate state and highly vibrationally excited states. When one of these transitions is found, HCN molecules are transferred to a highly excited vibrational state. Third, a ultraviolet laser photodissociates the highly excited molecules to produce H and CN radicals in its A (2)Pi electronic state. Finally, a fourth laser (probe) detects the presence of the CN(A) photofragments by means of an A-->B-->X laser induced fluorescence scheme. The spectra obtained with this technique, consisting of several rotationally resolved vibrational bands, have been analyzed. The positions and rotational parameters of the states observed are presented and compared with the results of a state-of-the-art variational calculation. (C) 2004 American Institute of Physics.