961 resultados para graphics processing unit (GPU)
Resumo:
Processing maps developed on the basis of the Dynamic Materials Model provide valuable information that might help the metal working industry in solving problems related to workability and microstructural control in commercial alloys. In this research, the processing maps for an as-cast AZ31 magnesium alloy are presented. The results are validated via microstructural observations, clearly delineating safe and unsafe regimes for further process design of this alloy.
Resumo:
Ex-situ grown thin films of SrBi2Nb2O9 (SBN) were deposited on platinum substrates using laser ablation technique. A low substrate-temperature-processing route was chosen to avoid any diffusion of bismuth into the Pt electrode. It was observed that the as grown films showed an oriented growth along the 'c'-axis (with zero spontaneous polarization). The as grown films were subsequently annealed to enhance crystallization. Upon annealing, these films transformed into a polycrystalline structure, and exhibited excellent ferroelectric properties. The switching was made to be possible by lowering the thickness without losing the electrically insulating behavior of the films. The hysteresis results showed an excellent square-shaped loop with results (P-r = 4 muC/cm(2) E-c = 90 kV/cm) in good agreement with the earlier reports. The films also exhibited a dielectric constant of 190 and a dissipation factor of 0.02, which showed dispersion at low frequencies. The frequency dispersion was found to obey Jonscher's universal power law relation, and was attributed to the ionic charge hopping process according to earlier reports. The de transport studies indicated an ohmic behavior in the low voltage region, while higher voltages induced a bulk space charge and resulted in non-linear current-voltage dependence.
Resumo:
Core-shell CoFe2O4@BaTiO3 nanoparticles and nanotubes have been prepared using a combination of solution processing and high temperature calcination. Both the core-shell nanostructures exhibit magnetic and dielectric hysteresis at room temperature and magnetoelectric effect. The dielectric constant of both the nanocomposites decreases upon application of magnetic field. The core-shell nanoparticles exhibit 1.7% change in magnetocapacitance around 134 K at 1 T, while the core-shell nanotubes show a remarkable 4.5% change in magnetocapacitance around 310 K at 2 T.(C) 2010 American Institute of Physics. [doi:10.1063/1.3478231].
Resumo:
High-speed evaluation of a large number of linear, quadratic, and cubic expressions is very important for the modeling and real-time display of objects in computer graphics. Using VLSI techniques, chips called pixel planes have actually been built by H. Fuchs and his group to evaluate linear expressions. In this paper, we describe a topological variant of Fuchs' pixel planes which can evaluate linear, quadratic, cubic, and higher-order polynomials. In our design, we make use of local interconnections only, i.e., interconnections between neighboring processing cells. This leads to the concept of tiling the processing cells for VLSI implementation.
Resumo:
The alloy, Ti-6Al-4V is an alpha + beta Ti alloy that has large prior beta grain size (similar to 2 mm) in the as cast state. Minor addition of B (about 0.1 wt.%) to it refines the grain size significantly as well as produces in-situ TiB needles. The role played by these microstructural modifications on high temperature deformation processing maps of B-modified Ti64 alloys is examined in this paper.Power dissipation efficiency and instability maps have been generated within the temperature range of 750-1000 degrees C and strain rate range of 10(-3)-10(+1) s(-1). Various deformation mechanisms, which operate in different temperature-strain rate regimes, were identified with the aid of the maps and complementary microstructural analysis of the deformed specimens. Results indicate four distinct deformation domains within the range of experimental conditions examined, with the combination of 900-1000 degrees C and 10(-3)-10(-2) s(-1) being the optimum for hot working. In that zone, dynamic globularization of alpha laths is the principle deformation mechanism. The marked reduction in the prior beta grain size, achieved with the addition of B, does not appear to alter this domain markedly. The other domains, with negative values of instability parameter, show undesirable microstructural features such as extensive kinking/bending of alpha laths and breaking of beta laths for Ti64-0.0B as well as generation of voids and cracks in the matrix and TiB needles in the B-modified alloys. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The dimensions of the ester unit, which is a component of the depsipeptide unit has been obtained by analysing the data on crystal structures of compounds having the ester unit. The dimensions indicate that this unit is slightly different from the peptide unit both as far as the bond length and bond angles are concerned.
Resumo:
The Intelligent Decision Support System (IDSS), also called an expert system, is explained. It was then applied to choose the right composition and firing temperature of a ZnO based varistor. 17 refs.
Resumo:
The use of split lenses for multiple imaging and multichannel optical processing is demonstrated. Conditions are obtained for nonoverlapping of multipled images and avoiding crosstalk in the multichannel processing. Almost uniform intensity across the multipled images is an advantage here, while the low ƒ/No. of the split lens segments puts a limit in the resolution in image processing. Experimental results of multiple imaging and of a few multichannel processing are presented.
Resumo:
Research on unit cohesion has shown positive correlations between cohesion and valued outcomes such as strong performance, reduced stress, less indiscipline, and high re-enlistment intentions. However, the correlations have varied in strength and significance. The purpose of this study is to show that taking into consideration the multi-component nature of cohesion and relating the most applicable components to specific outcomes could resolve much of the inconsistency. Unit cohesion is understood as a process of social integration among members of a primary group with its leaders, and with the larger secondary groups of which they are a part. Correspondingly, included in the framework are four bonding components: horizontal (peer) and vertical (subordinate and leader) and organizational and institutional, respectively. The data were collected as part of a larger research project on cohesion, leadership, and personal adjustment to the military. In all, 1,534 conscripts responded to four questionnaires during their service in 2001-2002. In addition, sociometric questionnaires were given to 537 group members in 47 squads toward the end of their service. The results showed that platoons with strong primary-group cohesion differed from other platoons in terms of performance, training quality, secondary-group experiences, and attitudes toward refresher training. On the sociometric level it was found that soldiers who were chosen as friends by others were more likely to have higher expected performance, better performance ratings, more positive attitudes toward military service, higher levels of well-being during conscript service, and fewer exemptions from duty during it. On the group level, the selection of the respondents own group leader rather than naming a leader from outside (i.e., leader bonding) had a bearing not only on cohesion and performance, but also on the social, attitudinal, and behavioral criteria. Overall, the aim of the study was to contribute to the research on cohesion by introducing a model that takes into account the primary foci of bonding and their impact. The results imply that primary-group and secondary-group bonding processes are equally influential in explaining individual and group performance, whereas the secondary-group bonding components are far superior in explaining career intentions, personal growth, avoidance of duty, and attitudes toward refresher training and national defense. This should be considered in the planning and conducting of training. The main conclusion is that the different types of cohesion components have a unique, positive, significant, but varying impact on a wide range of criteria, confirming the need to match the components with the specific criteria.
Resumo:
Campylobacter, mainly Campylobacter jejuni and C. coli, are worldwide recognized as a major cause of bacterial food-borne gastroenteritis. Epidemiological studies have shown handling or eating of poultry to be significant risk factors for human infections. Campylobacter contamination can occur at all stages of a poultry meat production cycle. The aim of this thesis was to study the occurrence and diversity of Campylobacter in broiler and turkey production in Finland. In summer 1999, 2.9 % of slaughtered broiler flocks were Campylobacter-positive. From the isolated strains 94 % were C. jejuni and 6% were C. coli. During years 2005-2006 one turkey parent flock, the hatchery, six different commercial turkey farms and different stages of the slaughterhouse were monitored during one and the half year. No Campylobacter were detected in either of the samples from the turkey parent flock or from the hatchery using the culture method. Instead PCR detected DNA of Campylobacter from the turkey parent flock and samples from the hatchery. Six out of 12 commercial turkey flocks were found negative at the farm level but only two of those were negative at slaughter. Campylobacter-positive samples within the flock at slaughter were detected between 0% and 94% with evisceration and chilling water being the most critical stages for contamination. All of Campylobacter isolates were shown to be C. jejuni. Campylobacter-positive turkey flocks were colonized by a limited number of Campylobacter genotypes both at the farm and slaughter level. In conclusion, in our first study in 1999 a low prevalence of Campylobacter in Finnish broiler flocks was detected and it has remained at a low level during the study period until the present. In the turkey meat production, we found that flocks which were negative at the farm became contaminated with Campylobacter at the slaughter process. These results suggest that proper and efficient cleaning and disinfection of slaughter and processing premises are needed to avoid cross-contamination. Prevention of colonization at the farm by a high level of biosecurity control and hygiene may be one of the most efficient ways to reduce the amount of Campylobacter-positive poultry meat in Finland. With a persistent low level of Campylobacter-positive flocks, it could be speculated that the use of logistic slaughtering, according to Campylobacter status at farm, might have be advantageous in reducing Campylobacter contamination of retail poultry products. However, the significance of the domestic poultry meat for human campylobacteriosis in Finland should be evaluated.
Resumo:
Cereal water-soluble β-glucan [(1→3)(1→4)-β-D-glucan] has well-evidenced health benefits and it contributes to the texture properties of foods. These functions are characteristically dependent on the excellent viscosity forming ability of this cell wall polysaccharide. The viscosity is affected by the molar mass, solubility and conformation of β-glucan molecule, which are further known to be altered during food processing. This study focused on demonstrating the degradation of β-glucan in water solutions following the addition of ascorbic acid, during heat treatments or high pressure homogenisation. Furthermore, the motivation of this study was in the non-enzymatic degradation mechanisms, particularly in oxidative cleavage via hydroxyl radicals. The addition of ascorbic acid at food-related concentrations (2-50 mM), autoclaving (120°C) treatments, and high pressure homogenisation (300-1000 bar) considerably cleaved the β-glucan chains, determined as a steep decrease in the viscosity of β-glucan solutions and decrease in the molar mass of β-glucan. The cleavage was more intense in a solution of native β-glucan with co-extracted compounds than in a solution of highly purified β-glucan. Despite the clear and immediate process-related degradation, β-glucan was less sensitive to these treatments compared to other water-soluble polysaccharides previously reported in the literature. In particular, the highly purified β-glucan was relatively resistant to the autoclaving treatments without the addition of ferrous ions. The formation of highly oxidative free radicals was detected at the elevated temperatures, and the formation was considerably accelerated by added ferrous ions. Also ascorbic acid pronounced the formation of these oxidative radicals, and oxygen was simultaneously consumed by ascorbic acid addition and by heating the β-glucan solutions. These results demonstrated the occurrence of oxidative reactions, most likely the metal catalysed Fenton-like reactions, in the β-glucan solutions during these processes. Furthermore, oxidized functional groups (carbonyls) were formed along the β-glucan chain by the treatments, including high pressure homogenisation, evidencing the oxidation of β-glucan by these treatments. The degradative forces acting on the particles in the high pressure homogenisation are generally considered to be the mechanical shear, but as shown here, carbohydrates are also easily degraded during the process, and oxidation may have a role in the modification of polysaccharides by this technique. In the present study, oat β-glucan was demonstrated to be susceptible to degradation during aqueous processing by non-enzymatic degradation mechanisms. Oxidation was for the first time shown to be a highly relevant degradation mechanism of β-glucan in food processing.
Resumo:
The hot deformation behaviors of β brass in the temperature range of 550°C to 800°C and α-β brass in the temperature range of 450°C to 800°C have been characterized in the strain rate range of 0.001 to 100 s−1 using processing maps developed on the basis of the Dynamic Materials Model. The map for β brass revealed a domain of superplasticity in the entire temperature range and at strain rates lower than 1 s−1, with a maximum efficiency of power dissipation of about 68 pct. The temperature variation of the efficiency of power dissipation in the domain is similar to that of the diffusion coefficient for zinc in β brass, confirming that the diffusion-accommodated flow controls the superplasticity. The material undergoes microstructural instability in the form of adiabatic shear bands and strain markings at temperatures lower than 700°C and at strain rates higher than 10 s−1. The map for α-β brass revealed a wide domain for processing in the temperature range of 550°C to 800°C and at strain rates lower than 1 s−1, with a maximum efficiency of 54 pct occurring at about 750°C and 0.001 s−1. In the domain, the α phase undergoes dynamic recrystallization and controls the hot deformation of the alloy, while the β phase deforms superplastically. At strain rates greater than 1 s−1, α-β brass exhibits microstructural instabilities manifested as flow rotations at lower temperatures and localized shear bands at higher temperatures.
Resumo:
The influence of stacking fault energy (SFE) on the mechanism of dynamic recrystallization (DRX) during hot deformation of FCC metals is examined in the light of results from the power dissipation maps. The DRX domain for high SFE metals like Al and Ni occurred at homologous temperature below 0·7 and strain rates of 0·001 s−1 while for low SFE metals like Cu and Pb the corresponding values are higher than 0·8 and 100 s−1. The peak efficiencies of power dissipation are 50% and below 40% respectively. A simple model which considers the rate of interface formation (nucleation) involving dislocation generation and simultaneous recovery and the rate of interface migration (growth) occurring with the reduction in interface energy as the driving force, has been proposed to account for the effect of SFE on DRX. The calculations reveal that in high SFE metals, interface migration controls DRX while the interface formation is the controlling factor in low SFE metals. In the latter case, the occurrence of flow softening and oscillations could be accounted for by this model.