914 resultados para freshwater marsh
Resumo:
The commonly held view of the conditions in the North Atlantic at the last glacial maximum, based on the interpretation of proxy records, is of large-scale cooling compared to today, limited deep convection, and extensive sea ice, all associated with a southward displaced and weakened overturning thermohaline circulation (THC) in the North Atlantic. Not all studies support that view; in particular, the "strength of the overturning circulation" is contentious and is a quantity that is difficult to determine even for the present day. Quasi-equilibrium simulations with coupled climate models forced by glacial boundary conditions have produced differing results, as have inferences made from proxy records. Most studies suggest the weaker circulation, some suggest little or no change, and a few suggest a stronger circulation. Here results are presented from a three-dimensional climate model, the Hadley Centre Coupled Model version 3 (HadCM3), of the coupled atmosphere - ocean - sea ice system suggesting, in a qualitative sense, that these diverging views could all have occurred at different times during the last glacial period, with different modes existing at different times. One mode might have been characterized by an active THC associated with moderate temperatures in the North Atlantic and a modest expanse of sea ice. The other mode, perhaps forced by large inputs of meltwater from the continental ice sheets into the northern North Atlantic, might have been characterized by a sluggish THC associated with very cold conditions around the North Atlantic and a large areal cover of sea ice. The authors' model simulation of such a mode, forced by a large input of freshwater, bears several of the characteristics of the Climate: Long-range Investigation, Mapping, and Prediction (CLIMAP) Project's reconstruction of glacial sea surface temperature and sea ice extent.
Resumo:
On the time scale of a century, the Atlantic thermohaline circulation (THC) is sensitive to the global surface salinity distribution. The advection of salinity toward the deep convection sites of the North Atlantic is one of the driving mechanisms for the THC. There is both a northward and a southward contributions. The northward salinity advection (Nsa) is related to the evaporation in the subtropics, and contributes to increased salinity in the convection sites. The southward salinity advection (Ssa) is related to the Arctic freshwater forcing and tends on the contrary to diminish salinity in the convection sites. The THC changes results from a delicate balance between these opposing mechanisms. In this study we evaluate these two effects using the IPSL-CM4 ocean-atmosphere-sea-ice coupled model (used for IPCC AR4). Perturbation experiments have been integrated for 100 years under modern insolation and trace gases. River runoff and evaporation minus precipitation are successively set to zero for the ocean during the coupling procedure. This allows the effect of processes Nsa and Ssa to be estimated with their specific time scales. It is shown that the convection sites in the North Atlantic exhibit various sensitivities to these processes. The Labrador Sea exhibits a dominant sensitivity to local forcing and Ssa with a typical time scale of 10 years, whereas the Irminger Sea is mostly sensitive to Nsa with a 15 year time scale. The GIN Seas respond to both effects with a time scale of 10 years for Ssa and 20 years for Nsa. It is concluded that, in the IPSL-CM4, the global freshwater forcing damps the THC on centennial time scales.
Resumo:
The complex and variable composition of natural sediments makes it very difficult to predict the bioavailability and bioaccumulation of sediment-bound contaminants. Several approaches have been proposed to overcome this problem, including an experimental model using artificial particles with or without humic acids as a source of organic matter. For this work, we have applied this experimental model, and also a sample of a natural sediment, to investigate the uptake and bioaccumulation of 2,4-dichlorophenol (2,4-DCP) by Sphaerium corneum. Additionally, the particle-water partition coefficients (K-d) were calculated. The results showed that the bioaccumulation of 2,4-DCP by clams did not depend solely on the levels of chemical dissolved, but also on the amount sorbed onto the particles and the characteristics and the strength of that binding. This study confirms the value of using artificial particles as a suitable experimental model for assessing the fate of sediment-bound contaminants. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Given the widespread degradation of freshwater habitats, assessing the distributions of species that may be negatively or positively impacted should be of general interest. However, determining distributions of freshwater organisms that are small and patchily distributed and attached or sedentary is particularly problematic, as it is time consuming, inaccurate, and nearly impossible when the focal species is rare. Here we illustrate the use of indirect sampling approaches to survey the distribution of the rare freshwater bryozoan Lophopus crystallinus, a priority species in the UK Biodiversity Action Plan [Anonymous, 1999. UK Biodiversity Group Tranche 2 Action Plans. Invertebrates, Vol. 4. Environment Agency, Peterborough, pp. 437-439.1. By utilising two complementary methods for sampling bryozoan propagules (statoblasts), namely the collection of debris samples and sediment cores, we achieved an efficient and integrative sampling of habitats across spatial and temporal scales. Analysis of 154 debris samples, encompassing 62 rivers and lakes, identified at least 16 new populations while analysis of 26 sediment cores provided evidence of current or very recent (in the last 10-20 years) occurrence in a further six localities. These results represent a more than 10-fold increase in the current recorded distribution of the species in the UK. Logistic regression analysis provided evidence that L. crystallinus is generally found in lowland sites and is tolerant of eutrophication. Our study exemplifies how integrative and indirect sampling approaches can greatly aid in assessing the conservation status of rare aquatic species and reveals, in this case, that the focal species is less rare than previously appreciated. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Waterbirds have been proposed as important vectors for the passive dispersal of those aquatic invertebrates and plants that lack a capacity for active dispersal between isolated water bodies. We analysed the frequency of internal transport of bryozoan propagules (statoblasts) by waterbirds in Donana, Spain, by examining their presence in the intestines and ceca of dead birds and analysing the role of different aspects of gut characteristics in explaining variation in the presence/absence and abundance of statoblasts. Of the 228 samples examined, 7.9% presented intact statoblasts of Plumatella fungosa (Pallas, 1768), Plumatella emarginata Allman, 1844, and two unidentified Plumatella species. For a given bird species, individuals with heavier gizzards and shorter ceca had a lower incidence and abundance of statoblasts in the lower gut. Grit mass and intestine length were unrelated to the presence or abundance of statoblasts. Our results suggest that waterbirds frequently transport bryozoans on a local scale, with lighter gizzards and longer ceca favouring such transport. Lighter gizzards are likely to destroy fewer propagules before they reach the lower gut. Species and individuals with longer ceca are particularly good candidates for long-distance dispersal of bryozoans, given the longer passage time of propagules that enter the ceca.
Resumo:
In the northern hemisphere, glacial periods have had profound and lasting effects on the population genetics of numerous species, with founder effects often persisting for many generations in formerly glaciated regions. We found an unusual example of this in the freshwater bryozoan Cristatella mucedo, which showed regional differences in haplotype diversity with relatively low levels of haplotype diversity in northern Europe compared to central/southern Europe despite previous evidence for frequent dispersal between C. mucedo populations. Such contradictions between high dispersal and low gene flow have now been reported in several other freshwater taxa and may be attributed to persistent founder effects following colonization of sites by a few individuals whose efficient reproduction leads to rapid population growth. Alternatively, selection may determine which genotypes can thrive in northerly locations, or it may be that C. mucedo has undergone cryptic speciation. Future work on adaptive genomic regions is required before we can understand how gene flow, local adaptation, and speciation influence the current distribution patterns of bryozoans and other freshwater invertebrates.
Resumo:
Plumatella geimermassardi is a newly recognized species of phylactolaemate bryozoan. Its known range extends from Ireland east through southern Norway and south into Italy. Colonies grow close to the substrate with little free branching; the body wall is mostly transparent and without an obvious raphe. Floatoblasts are broadly oval and relatively small, with distinctively large dorsal fenestra and uniformly narrow ventral annulus. The sessoblast basal valve is low and dish-shaped; the annulus bears tubercles which vary in their prominence. This species brings to 14 the number of phylactolaemate bryozoans known in the region.
Resumo:
1. The freshwater bryozoan Cristatella mucedo, in common with other sessile, benthic freshwater taxa, has an unusual life history: sex occurs during a relatively brief period near the start of the growing season, and overwintering occurs in the form of asexually produced dormant propagules (statoblasts). Consistent observed heterozygosity (Ho) deficits in C. mucedo populations have previously suggested that inbreeding is common, although a possible contribution of a Wahlund effect to low Ho could not be discounted. 2. We have used microsatellite data in the first study based on codominant markers to genetically characterise maternal colonies and larval offspring of C. mucedo . The 'population' represented by the larvae was in Hardy-Weinberg equilibrium, which has previously been found in only one of 39 populations of C. mucedo . At least 64% of larvae were the products of outcrossing. We suggest that the unusual early timing of sex may be a strategy to maximise rates of outcrossing within populations of sessile freshwater invertebrates.