635 resultados para fractal
Resumo:
Metallic glasses (MGs) are a relatively new class of materials discovered in 1960 and lauded for its high strengths and superior elastic properties. Three major obstacles prevent their widespread use as engineering materials for nanotechnology and industry: 1) their lack of plasticity mechanisms for deformation beyond the elastic limit, 2) their disordered atomic structure, which prevents effective study of their structure-to-property relationships, and 3) their poor glass forming ability, which limits bulk metallic glasses to sizes on the order of centimeters. We focused on understanding the first two major challenges by observing the mechanical properties of nanoscale metallic glasses in order to gain insight into its atomic-level structure and deformation mechanisms. We found that anomalous stable plastic flow emerges in room-temperature MGs at the nanoscale in wires as little as ~100 nanometers wide regardless of fabrication route (ion-irradiated or not). To circumvent experimental challenges in characterizing the atomic-level structure, extensive molecular dynamics simulations were conducted using approximated (embedded atom method) potentials to probe the underlying processes that give rise to plasticity in nanowires. Simulated results showed that mechanisms of relaxation via the sample free surfaces contribute to tensile ductility in these nanowires. Continuing with characterizing nanoscale properties, we studied the fracture properties of nano-notched MGnanowires and the compressive response of MG nanolattices at cryogenic (~130 K) temperatures. We learned from these experiments that nanowires are sensitive to flaws when the (amorphous) microstructure does not contribute stress concentrations, and that nano-architected structures with MG nanoribbons are brittle at low temperatures except when elastic shell buckling mechanisms dominate at low ribbon thicknesses (~20 nm), which instead gives rise to fully recoverable nanostructures regardless of temperature. Finally, motivated by understanding structure-to-property relationships in MGs, we studied the disordered atomic structure using a combination of in-situ X-ray tomography and X-ray diffraction in a diamond anvil cell and molecular dynamics simulations. Synchrotron X-ray experiments showed the progression of the atomic-level structure (in momentum space) and macroscale volume under increasing hydrostatic pressures. Corresponding simulations provided information on the real space structure, and we found that the samples displayed fractal scaling (rd ∝ V, d < 3) at short length scales (< ~8 Å), and exhibited a crossover to a homogeneous scaling (d = 3) at long length scales. We examined this underlying fractal structure of MGs with parallels to percolation clusters and discuss the implications of this structural analogy to MG properties and the glass transition phenomenon.
Resumo:
The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.
Resumo:
Nesta dissertação estudámos as séries temporais que representam a complexa dinâmica do comportamento. Demos especial atenção às técnicas de dinâmica não linear. As técnicas fornecem-nos uma quantidade de índices quantitativos que servem para descrever as propriedades dinâmicas do sistema. Estes índices têm sido intensivamente usados nos últimos anos em aplicações práticas em Psicologia. Estudámos alguns conceitos básicos de dinâmica não linear, as características dos sistemas caóticos e algumas grandezas que caracterizam os sistemas dinâmicos, que incluem a dimensão fractal, que indica a complexidade de informação contida na série temporal, os expoentes de Lyapunov, que indicam a taxa com que pontos arbitrariamente próximos no espaço de fases da representação do espaço dinâmico, divergem ao longo do tempo, ou a entropia aproximada, que mede o grau de imprevisibilidade de uma série temporal. Esta informação pode então ser usada para compreender, e possivelmente prever, o comportamento. ABSTRACT: ln this thesis we studied the time series that represent the complex dynamic behavior. We focused on techniques of nonlinear dynamics. The techniques provide us a number of quantitative indices used to describe the dynamic properties of the system. These indices have been extensively used in recent years in practical applications in psychology. We studied some basic concepts of nonlinear dynamics, the characteristics of chaotic systems and some quantities that characterize the dynamic systems, including fractal dimension, indicating the complexity of information in the series, the Lyapunov exponents, which indicate the rate at that arbitrarily dose points in phase space representation of a dynamic, vary over time, or the approximate entropy, which measures the degree of unpredictability of a series. This information can then be used to understand and possibly predict the behavior.
Resumo:
Clustering data streams is an important task in data mining research. Recently, some algorithms have been proposed to cluster data streams as a whole, but just few of them deal with multivariate data streams. Even so, these algorithms merely aggregate the attributes without touching upon the correlation among them. In order to overcome this issue, we propose a new framework to cluster multivariate data streams based on their evolving behavior over time, exploring the correlations among their attributes by computing the fractal dimension. Experimental results with climate data streams show that the clusters' quality and compactness can be improved compared to the competing method, leading to the thoughtfulness that attributes correlations cannot be put aside. In fact, the clusters' compactness are 7 to 25 times better using our method. Our framework also proves to be an useful tool to assist meteorologists in understanding the climate behavior along a period of time.
Resumo:
When it comes to designing a structure, architects and engineers want to join forces in order to create and build the most beautiful and efficient building. From finding new shapes and forms to optimizing the stability and the resistance, there is a constant link to be made between both professions. In architecture, there has always been a particular interest in creating new shapes and types of a structure inspired by many different fields, one of them being nature itself. In engineering, the selection of optimum has always dictated the way of thinking and designing structures. This mindset led through studies to the current best practices in construction. However, both disciplines were limited by the traditional manufacturing constraints at a certain point. Over the last decades, much progress was made from a technological point of view, allowing to go beyond today's manufacturing constraints. With the emergence of Wire-and-Arc Additive Manufacturing (WAAM) combined with Algorithmic-Aided Design (AAD), architects and engineers are offered new opportunities to merge architectural beauty and structural efficiency. Both technologies allow for exploring and building unusual and complex structural shapes in addition to a reduction of costs and environmental impacts. Through this study, the author wants to make use of previously mentioned technologies and assess their potential, first to design an aesthetically appreciated tree-like column with the idea of secondly proposing a new type of standardized and optimized sandwich cross-section to the construction industry. Parametric algorithms to model the dendriform column and the new sandwich cross-section are developed and presented in detail. A catalog draft of the latter and methods to establish it are then proposed and discussed. Finally, the buckling behavior of this latter is assessed considering standard steel and WAAM material properties.