906 resultados para force


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a growing appreciation among evolutionary biologists that the rate and tempo of molecular evolution might often be altered at or near the time of speciation, i.e. that speciation is in some way a special time for genes. Molecular phylogenies frequently reveal increased rates of genetic evolution associated with speciation and other lines of investigation suggest that various types of abrupt genomic disruption can play an important role in promoting speciation via reproductive isolation. These phenomena are in conflict with the gradual view of molecular evolution that is implicit in much of our thinking about speciation and in the tools of modern biology. This raises the prospect of studying the molecular evolutionary consequences of speciation per se and studying the footprint of speciation as an active force in promoting genetic divergence. Here we discuss the reasons to believe that speciation can play such a role and elaborate on possible mechanisms for accelerated rates of evolution following speciation. We provide an example of how it is possible detect whether accelerated bursts of evolution occur in neutral and/or adaptive regions of genes and discuss the implications of rapid episodes of change for conventional models of molecular evolution. Speciation might often owe more to ephemeral and essentially arbitrary events that cause reproductive isolation than to the gradual and regular tug of natural selection that draws a species into a new niche.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Researchers in the rehabilitation engineering community have been designing and developing a variety of passive/active devices to help persons with limited upper extremity function to perform essential daily manipulations. Devices range from low-end tools such as head/mouth sticks to sophisticated robots using vision and speech input. While almost all of the high-end equipment developed to date relies on visual feedback alone to guide the user providing no tactile or proprioceptive cues, the “low-tech” head/mouth sticks deliver better “feel” because of the inherent force feedback through physical contact with the user's body. However, the disadvantage of a conventional head/mouth stick is that it can only function in a limited workspace and the performance is limited by the user's strength. It therefore seems reasonable to attempt to develop a system that exploits the advantages of the two approaches: the power and flexibility of robotic systems with the sensory feedback of a headstick. The system presented in this paper reflects the design philosophy stated above. This system contains a pair of master-slave robots with the master being operated by the user's head and the slave acting as a telestick. Described in this paper are the design, control strategies, implementation and performance evaluation of the head-controlled force-reflecting telestick system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses a new method of impedance control that has been successfully implemented on the master robot of a teleoperation system. The method involves calibrating the robot to quantify the effect of adjustable controller parameters on the impedances along its different axes. The empirical equations relating end-effector impedance to the controller's feedback gains are obtained by performing system identification tests along individual axes of the robot. With these equations, online control of end-effector stiffness and damping is possible without having to monitor joint torques or solving complex algorithms. Hard contact conditions and compliant interfaces have been effectively demonstrated on a telemanipulation test-bed using appropriate combinations of stiffness and damping settings obtained by this method.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

though discrete cell-based frameworks are now commonly used to simulate a whole range of biological phenomena, it is typically not obvious how the numerous different types of model are related to one another, nor which one is most appropriate in a given context. Here we demonstrate how individual cell movement on the discrete scale modeled using nonlinear force laws can be described by nonlinear diffusion coefficients on the continuum scale. A general relationship between nonlinear force laws and their respective diffusion coefficients is derived in one spatial dimension and, subsequently, a range of particular examples is considered. For each case excellent agreement is observed between numerical solutions of the discrete and corresponding continuum models. Three case studies are considered in which we demonstrate how the derived nonlinear diffusion coefficients can be used to (a) relate different discrete models of cell behavior; (b) derive discrete, intercell force laws from previously posed diffusion coefficients, and (c) describe aggregative behavior in discrete simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The DNA G-qadruplexes are one of the targets being actively explored for anti-cancer therapy by inhibiting them through small molecules. This computational study was conducted to predict the binding strengths and orientations of a set of novel dimethyl-amino-ethyl-acridine (DACA) analogues that are designed and synthesized in our laboratory, but did not diffract in Synchrotron light.Thecrystal structure of DNA G-Quadruplex(TGGGGT)4(PDB: 1O0K) was used as target for their binding properties in our studies.We used both the force field (FF) and QM/MM derived atomic charge schemes simultaneously for comparing the predictions of drug binding modes and their energetics. This study evaluates the comparative performance of fixed point charge based Glide XP docking and the quantum polarized ligand docking schemes. These results will provide insights on the effects of including or ignoring the drug-receptor interfacial polarization events in molecular docking simulations, which in turn, will aid the rational selection of computational methods at different levels of theory in future drug design programs. Plenty of molecular modelling tools and methods currently exist for modelling drug-receptor or protein-protein, or DNA-protein interactionssat different levels of complexities.Yet, the capasity of such tools to describevarious physico-chemical propertiesmore accuratelyis the next step ahead in currentresearch.Especially, the usage of most accurate methods in quantum mechanics(QM) is severely restricted by theirtedious nature. Though the usage of massively parallel super computing environments resulted in a tremendous improvement in molecular mechanics (MM) calculations like molecular dynamics,they are still capable of dealing with only a couple of tens to hundreds of atoms for QM methods. One such efficient strategy that utilizes thepowers of both MM and QM are the QM/MM hybrid methods. Lately, attempts have been directed towards the goal of deploying several different QM methods for betterment of force field based simulations, but with practical restrictions in place. One of such methods utilizes the inclusion of charge polarization events at the drug-receptor interface, that is not explicitly present in the MM FF.