985 resultados para foliar ontogeny
Resumo:
2015
Resumo:
2011
Resumo:
2012
Resumo:
2012
Resumo:
A produção de mudas vigorosas é um dos primeiros passos para o sucesso do cultivo de olerícolas. Os adubos orgânicos e biofertilizantes auxiliam no suprimento nutricional das plantas e tem menor custo quando obtidos na propriedade. Foi avaliado o uso de biofertilizante e esterco de aves sobre a produção de mudas de pimentão (cv. Dhara R, Sakata®).
Resumo:
O objetivo do trabalho foi estudar a partição da biomassa na copa de clones comerciais de eucaliptos em Integração Lavoura Pecuária Floresta (ILPF) e recomendar práticas de desrama. Os dados foram coletados na Fazenda Guarantã em Juara, MT, e foram avaliados cinco clones implantados em renques duplos e triplos em espaçamento de 21 x 3,5 x 2,5 m aos 15 meses de idade. Para o estudo da biomassa na parte aérea das plantas foram selecionadas duas árvores amostras de cada clone, que foram abatidas e tiveram a biomassa da copa, tronco e densidade básica determinados. Concluiu-se que a distribuição da biomassa e área foliar ao longo da copa variou em função do material genético e da configuração de plantio. Para todos os materiais genéticos avaliados, foi observada a presença de galhos mortos na copa, indicando a necessidade de se fazer desramas antes dos 15 meses de idade se o objetivo for produzir madeira para serraria. A definição da intensidade de desrama com base na proporção da altura da copa viva mostrou-se inadequada quando empregada de forma genérica sem o estudo prévio da arquitetura da copa.
Resumo:
2016
Resumo:
The development of bipedal locomotion was gradual during evolution, and with the increase in discoveries of fossils and, in particular, in discoveries of pedal bones, the attention to this problematic has grown in the last decades. Moreover, the discoveries of juveniles fossil foot bones has led the attention to the evolution and the development of bipedal locomotion. The study of the development of human gait in children may help in shedding light to the development of human locomotion. The human talus plays a pivotal role, linking the leg to the foot and receiving and distributing the weight, while permitting a wide range of foot movements. It is also present at birth, and this makes a perfect bone to study to disentangle how the bone structure acts to cope with the changes in locomotion and body weight. Here, I analyze the external and internal morphology of the human talus from the perinatal period to adolescence, to investigate how the different phases of the acquisition of bipedal gait affect talar morphology, and how the bone copes with the weight gain during growth. Results show that the talar internal and external morphologies change in line with the different activities and loading of the foot. Initially, at around birth, the talus has a very globular and immature external shape, with a very dense trabecular architecture, composed of thin, numerous, and densely packed trabeculae, with a rather isotropic structure. External and internal morphologies change in relation to the different loading patterns which follow during growth, showing a more specialized structure, both in the external and internal morphology, linked to the maturation of bipedal locomotion, until the adult-like pattern is reached, during adolescence.
Resumo:
Trees from tropical montane cloud forest (TMCF) display very dynamic patterns of water use. They are capable of downwards water transport towards the soil during leaf-wetting events, likely a consequence of foliar water uptake (FWU), as well as high rates of night-time transpiration (Enight) during drier nights. These two processes might represent important sources of water losses and gains to the plant, but little is known about the environmental factors controlling these water fluxes. We evaluated how contrasting atmospheric and soil water conditions control diurnal, nocturnal and seasonal dynamics of sap flow in Drimys brasiliensis (Miers), a common Neotropical cloud forest species. We monitored the seasonal variation of soil water content, micrometeorological conditions and sap flow of D. brasiliensis trees in the field during wet and dry seasons. We also conducted a greenhouse experiment exposing D. brasiliensis saplings under contrasting soil water conditions to deuterium-labelled fog water. We found that during the night D. brasiliensis possesses heightened stomatal sensitivity to soil drought and vapour pressure deficit, which reduces night-time water loss. Leaf-wetting events had a strong suppressive effect on tree transpiration (E). Foliar water uptake increased in magnitude with drier soil and during longer leaf-wetting events. The difference between diurnal and nocturnal stomatal behaviour in D. brasiliensis could be attributed to an optimization of carbon gain when leaves are dry, as well as minimization of nocturnal water loss. The leaf-wetting events on the other hand seem important to D. brasiliensis water balance, especially during soil droughts, both by suppressing tree transpiration (E) and as a small additional water supply through FWU. Our results suggest that decreases in leaf-wetting events in TMCF might increase D. brasiliensis water loss and decrease its water gains, which could compromise its ecophysiological performance and survival during dry periods.
Resumo:
The covering of the soil is an agricultural practice that intends to control the harmful herbs, to reduce the losses of water by evaporation of the soil, and to facilitate the harvest and the commercialization, once the product is cleaner and healthier. However, when the soil is covered important microclimatic parameters are also altered, and consequently the germination of seeds, the growth of roots, the absorption of water and nutrients, the metabolic activity of the plants and the carbohydrates storage. The current trial intended to evaluate the effect of soil covering with blue colored film on consumptive water-use in a lettuce crop (Lactuca sativa, L.). The experiment was carried out in a plastic greenhouse in Araras - São Paulo State, Brazil from March 3rd, 2001 to May 5th, 2001. The consumptive water-use was measured through two weighing lysimeter installed inside the greenhouse. Crop spacing was 0.25 m x 0.25 m and the color of the film above soil was blue. Leaf area index (IAF), was measured six times (7; 14; 21; 28; 35; 40 days after transplant) and the water-use efficiency (EU) was measured at the end. The experimental design was subdivided portions with two treatments, bare soil and covered soil. The average consumptive water-use was 4.17 mm day-1 to the bare soil treatment and 3.11 mm day-1 to the covered soil treatment. The final leaf area index was 25.23 to the bare soil treatment and 24.39 to the covered soil treatment, and there was no statistical difference between then.
Resumo:
It was proposed to evaluate the hydroponic lettuce production, variety Vera, on inclined benches with channels of 100 mm, and Nutrient Film Technique, as answer to carbon dioxide application and evaporative cooling. There were five cycles of cultivation from March, 20th to April, 17th (C1); from May, 25th to June, 29th (C2); from July, 13th to August, 20th (C3); from August, 27th to October, 10th (C4); from December, 12th to January, 10th (C5). In three greenhouses were tested the following systems: (A1) without evaporative cooling air CO2 aerial injection, (A2) with CO2 aerial injection and without evaporative cooling and (A3) with CO2 aerial injection and pad-fan evaporative cooling system. The fresh and dry mass of leaves in grams, number of leaves and leaf area in square millimeter were evaluated. The completely randomized statistical analysis was used. The cycle C1 were used 48 replications, for cycles C2, C3 and C5 were used 64 replications and C5 were used 24 replications. The results showed that greenhouse with evaporative cooling system and CO2 allow better development and greater lettuce yield. It was possible to conclude that the aerial injection of CO2, in the absence of evaporative cooling system, did not lead increasing the lettuce productivity to most cycles. Bigger lettuce leaf areas were found in periods with higher temperatures.
Resumo:
This paper describes a method for leaf vein shape characterization using Hermite polynomial cubic representation. The elements associated with this representation are used as secondary vein descriptors and their discriminatory potential are analyzed based on the identification of two legume species (Lonchocarpus muehlbergianus Hassl. and L. subglaucescens Mart, ex Benth.). The elements of Hermite geometry influence a curve along all its extension allowing a global description of the secondary vein course by a descriptor of low dimensionality. The obtained results shown the analyzed species can be discriminated by this method and it can be used in addition to commonly considered elements in the taxonomic process.
Resumo:
The aim of this work was to describe the morphology and ontogeny of P. riedelii fruits to aid in taxonomic, ecological and phylogenetic studies in Apocynaceae. Fruits were fixed in FAA, embedded in plastic resin, sectioned at 10 ìm and stained with toluidine blue, for structural analysis. The fruit of P. riedelii is a follicarium, with two follicular fruitlets. The epicarp is one-cell-layered, with trichomes and thick cuticle. The mesocarp, originating from fundamental ovary tissue, is parenchymatous with laticifers, non-lignified fibers and vascular bundles. The endocarp sensu lato is two-celllayered of crossed sclereids, originating from the inner ovary epidermis and from a single layer of parenchyma cells of fundamental ovary tissue. Follicle dehiscence is lateral and the dehiscence process involves anatomical characteristics such as a dehiscence zone with thin-walled cells, non-lignified fibers in the mesocarp and crossed sclereids in the endocarp.
Resumo:
The presence of vegetal impurities in sugarcane delivered to sugarmills as green and dry leaves is a problem not only because they are non-value materials to be processed along with sugarcane stalks, but also because they can rise the color of the clarified juice and, consequently, the color of the sugar produced, with a reduction of its quality for the market. Another problem is the mud volume sedimented in the clarifiers, which also can result in a larger recirculation and greater volume of filtrate juice, with higher losses of sucrose and utilization of the vacuum rotary filters. The objective of this work was to observe the effect of the presence of green and dry leaves on sugarcane juice clarification, related to a control treatment with the addition of fiber extracted from the stalks. The experiments were planned based on the addition of quantities of fibrous sources in order to formulate samples with absolute increase of 0.25 , 0.50 and 0.75 percentual points over the fiber content of the sugarcane stalks (control treatment). The juice clarification was conducted with a laboratory clarifier. The clarified juice color and the mud volume were evaluated. The presence of green leaves caused higher color and mud volume due to the extraction of non-sucrose components of the leaves. Soluble compounds of dry leaves were also extracted, though not detected by juice analysis. The addition of the fiber extracted from the stalks did not induce alterations in the clarification process.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física