972 resultados para focal epilepsy
Resumo:
Ambulatory EEG recording enables patients with epilepsy and related disorders to be monitored in an unrestricted environment for prolonged periods. Attacks can therefore be recorded and EEG changes at the time can aid diagnosis. The relevant Iiterature is reviewed and a study made of' 250 clinical investigations. A study was also made of the artefacts,encountered during ambulatory recording. Three quarters of referrals were for distinguishing between epileptic and non-epileptic attacks. Over 60% of patients showed no abnormality during attacks. In comparison with the basic EEG the ambulatory EEG provided about ten times as much information. A preliminary follow-up study showed that results, of ambulatory monitoring agreed with the final diagnosis in 8 of 12 patients studied. Of 10 patients referred, for monitoring the occurrence of absence seizures, 8 showed abnormality during the baslcJ EEG .and 10 during the ambulatory EEG. Other patients. were referred: for sleep recording and to clarify the seizure type. An investigation into once daily (OD) versus twice daily administration of sodium valproate in patients with absence seizures showed that an OD regime was equally as effective as a BD regime. Circadian variations in spike and wave activity in patients on and off treatment were also examined. There was significant agreement between subjects on the time of occurrence of abnormality during sleep only, This pattern was not ,affected with treatment nor was there any difference in the daily pattern of occurrence of abnormality between the two regimes. Overall findings suggested that ambulatory monitoring was a valuable tool in the diagnosis and treatment of epilepsy which with careful planning and patient selection could be used in any EEG department and would benefit a:wide range of patients.
Resumo:
Objective - To investigate visual habituation – a measure of visual cortical excitability – in photosensitive patients in pediatric age and compare the findings with a matched sample with idiopathic generalized epilepsies without photosensitivity and with normally developing children. Methods - We presented a full-field black-and-white checkerboard pattern, at 3 reversal/s with 100% contrast binocularly for 600 consecutive trials and measured the N75–P100 and P100–N145 pattern-reversal visual evoked potential inter-peak amplitudes and N75, P100, N145 latencies for the six blocks of 100 responses. As a measure of habituation we used the slope of the linear regression line of the N75–P100 and P100–N145 peak-to-peak amplitudes. The slope of the linear regression line of the N75–P100 and P100–N145 latencies was also analyzed. Results - Statistical analysis revealed significant differences between the three groups in the slope index of N75–P100 PR-VEP amplitude, with increased or constant amplitude in the PS group compare to the IGE and ND across the six blocks. Conclusions - Our results support the notion that photosensitivity is associated with altered control of excitatory and inhibitory cortical processes. The causal relationship between habituation deficit and photo-paroxysmal response needs to be further investigated with longitudinal studies. Significance This study supports the hypothesis that suppression of PR-VEP is a sensitive intermediate phenotype, which discriminates patients with photosensitivity from those with generalized epilepsies in pediatric age.
Resumo:
BACKGROUND: Seizures are one of the most common symptoms of acute neurological disorders in newborns. This study aims at evaluating predictors of epilepsy in newborns with neonatal seizures. METHODS: we recruited consecutively eighty-five neonates with repeated neonatal video-EEG-confirmed seizures between Jan 1999 and Dec 2004. The relationship between clinical, EEG and ultrasound data in neonatal period and the development of post-neonatal epilepsy was investigated at 7 years of age. RESULTS: Fifteen patients (17.6%) developed post-neonatal epilepsy. Partial or no response to anticonvulsant therapy (OR 16.7, 95% CI: 1.8-155.8, p= .01; OR 47, 95% CI: 5.2-418.1, p<.01 respectively), severely abnormal cerebral ultrasound scan findings (OR: 5.4; 95% CI: 1.1-27.4; p<.04), severely abnormal EEG background activity (OR: 9.5; 95% CI: 1.6-54.2; p= .01) and the presence of status epilepticus (OR: 6.1; 95% CI: 1.8-20.3; p<.01) were found to be predictors of epilepsy. However, only the response to therapy seemed to be an independent predictor of post-neonatal epilepsy. CONCLUSION: Neonatal seizures seem to be related to post-neonatal epilepsy. Recurrent and prolonged neonatal seizures may act on an epileptogenic substrate, causing further damage, which is responsible for the subsequent clinical expression of epilepsy.
Resumo:
This report is based on discussions and submissions from an expert working group consisting of veterinarians, animal care staff and scientists with expert knowledge relevant to the field and aims to facilitate the implementation of the Three Rs (replacement, reduction and refinement) in the use of animal models or procedures involving seizures, convulsions and epilepsy. Each of these conditions will be considered, the specific welfare issues discussed, and practical measures to reduce animal use and suffering suggested. The emphasis is on refinement since this has the greatest potential for immediate implementation, and some general issues for refinement are summarised to help achieve this, with more detail provided on a range of specific refinements.
Resumo:
The neural bases of altered consciousness in patients with epilepsy during seizures and at rest have raised significant interest in the last decade. This exponential growth has been supported by the parallel development of techniques and methods to investigate brain function noninvasively with unprecedented spatial and temporal resolution. In this article, we review the contribution of magnetoencephalography to deconvolve the bioelectrical changes associated with impaired consciousness during seizures. We use data collected from a patient with refractory absence seizures to discuss how spike-wave discharges are associated with perturbations in optimal connectivity within and between brain regions and discuss indirect evidence to suggest that this phenomenon might explain the cognitive deficits experienced during prolonged 3/s spike-wave discharges. © 2013 Elsevier Inc.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Purpose: To describe the electroclinical features of subjects who presented with a photosensitive benign myoclonic epilepsy in infancy (PBMEI). Methods: The patients were selected from a group of epileptic subjects with seizure onset in infancy or early childhood. Inclusion criteria were the presence of photic-induced myoclonic seizures and a favorable outcome. Cases with less than 24 month follow up were excluded from the analysis. Results: Eight patients were identified (4 males, 4 females). Personal history was uneventful. All of them had familial antecedents of epilepsy. Psychomotor development was normal in 6 cases, both before and after seizure onset. One patient showed a mild mental retardation and a further patient showed some behavioral disturbances. Neuroradiological investigations, when performed (5 cases), gave normal results. The clinical manifestations were typical and could vary from upward movements of the eyes to myoclonic jerks of the head and shoulders, isolated or briefly repetitive, never causing a fall. Age of onset was between 11 months and 3 years and 2 months. Characteristically, the seizures were always triggered by photic stimulation. Non photo-induced spontaneous myoclonic attacks were reported in 2 cases during the follow-up. Other types of seizures were present at follow-up in 2 cases. The outcome was favorable, even if, usually, seizure control required high AED plasma levels. Since the clinical symptoms were not recognized early, some patients were treated only many years after the onset of symptoms. Conclusion: Among BMEI patients, our cases constitute a subgroup in which myoclonic jerks were always triggered by photostimulation, in particular at onset of their epilepsy. © 2006 International League Against Epilepsy.
Resumo:
Visual sensitivity, defined as the “susceptibility toward experiencing seizures, which are triggered by the physical characteristics of visual stimuli and not by their perceptual properties,”1 can manifest in the context of various forms of generalized or focal, idiopathic or symptomatic epilepsies.2 We report a patient with no family or personal history of epilepsy who presented episodes of loss of consciousness exclusively triggered by visual stimuli unrelated to their emotional content, in which we have documented EEG-EKG characteristics suggestive of a neurally mediated syncope.
Resumo:
Magnetoencephalography (MEG) offers significant opportunities for the localization and characterization of focal and generalized epilepsies, but its potential has so far not been fully exploited, as the evidence for its effectiveness is still anecdotal. This is particularly true for pediatric epilepsy. MEG recordings on school-age children typically rely on the use of MEG systems that were designed for adults and children's smaller head-size and stature can cause significant problems. Reduced signal-to-noise ratio when recording from smaller heads, increased movement, reduced sensor coverage of anterior temporal regions and incomplete insertion into the MEG helmet can all reduce the quality of data collected from children. We summarize these challenges and suggest some practical solutions.
Resumo:
Magnetoencephalographic (MEG) signals, like electroencephalographic (EEG) measures, are the direct extracranial manifestations of neuronal activation. The two techniques can detect time-varying changes in electromagnetic activity with a sub-millisecond time resolution. Extra-cranial electromagnetic measures are the cornerstone of the non-invasive diagnostic armamentarium in patients with epilepsy. Their extremely high temporal resolution – comparable to intracranial recordings – is the basis for a precise definition of onset and propagation of ictal and interictal abnormalities. Given the cost of the infrastructure and equipment, MEG has yet to develop into a routinely applicable diagnostic tool in clinical settings. However, in recent years, an increasing number of patients with epilepsy have been investigated – usually in the context of presurgical evaluation of refractory epilepsies – and initial encouraging results have been reported. We will briefly review the principles and the technology behind MEG and its contribution in the diagnostic work-up of patients with epilepsy.
Resumo:
We investigated 50 young patients with a diagnosis of Rolandic Epilepsy (RE) for the presence of abnormalities in autonomic tone compared with 50 young patients with idiopathic generalized epilepsy with absences and 50 typically developing children of comparable age. We analyzed time domain (N-N interval, pNN50) and frequency domain (High Frequency (HF), Low Frequency (LF) and LF/HF ratio) indices from ten-minute resting EKG activity. Patients with RE showed significantly higher HF and lower LF power and lower LF/HF ratio than controls, independent of the epilepsy group, and did not show significant differences in any other autonomic index with respect to the two control groups. In RE, we found a negative relationship between both seizure load and frequency of sleep interictal EEG abnormalities with parasympathetic drive levels. These changes might be the expression of adaptive mechanisms to prevent the excessive sympathetic drive seen in patients with refractory epilepsies. © 2012 Elsevier Inc.
Resumo:
Increasingly, neuroscientists are taking the opportunity to use live human tissue obtained from elective neurosurgical procedures for electrophysiological studies in vitro. Access to this valuable resource permits unique studies into the network dynamics that contribute to the generation of pathological electrical activity in the human epileptic brain. Whilst this approach has provided insights into the mechanistic features of electrophysiological patterns associated with human epilepsy, it is not without technical and methodological challenges. This review outlines the main difficulties associated with working with epileptic human brain slices from the point of collection, through the stages of preparation, storage and recording. Moreover, it outlines the limitations, in terms of the nature of epileptic activity that can be observed in such tissue, in particular, the rarity of spontaneous ictal discharges, we discuss manipulations that can be utilised to induce such activity. In addition to discussing conventional electrophysiological techniques that are routinely employed in epileptic human brain slices, we review how imaging and multielectrode array recordings could provide novel insights into the network dynamics of human epileptogenesis. Acute studies in human brain slices are ultimately limited by the lifetime of the tissue so overcoming this issue provides increased opportunity for information gain. We review the literature with respect to organotypic culture techniques that may hold the key to prolonging the viability of this material. A combination of long-term culture techniques, viral transduction approaches and electrophysiology in human brain slices promotes the possibility of large scale monitoring and manipulation of neuronal activity in epileptic microcircuits.
Resumo:
PurposeTo develop and validate a classification system for focal vitreomacular traction (VMT) with and without macular hole based on spectral domain optical coherence tomography (SD-OCT), intended to aid in decision-making and prognostication.MethodsA panel of retinal specialists convened to develop this system. A literature review followed by discussion on a wide range of cases formed the basis for the proposed classification. Key features on OCT were identified and analysed for their utility in clinical practice. A final classification was devised based on two sequential, independent validation exercises to improve interobserver variability.ResultsThis classification tool pertains to idiopathic focal VMT assessed by a horizontal line scan using SD-OCT. The system uses width (W), interface features (I), foveal shape (S), retinal pigment epithelial changes (P), elevation of vitreous attachment (E), and inner and outer retinal changes (R) to give the acronym WISPERR. Each category is scored hierarchically. Results from the second independent validation exercise indicated a high level of agreement between graders: intraclass correlation ranged from 0.84 to 0.99 for continuous variables and Fleiss' kappa values ranged from 0.76 to 0.95 for categorical variables.ConclusionsWe present an OCT-based classification system for focal VMT that allows anatomical detail to be scrutinised and scored qualitatively and quantitatively using a simple, pragmatic algorithm, which may be of value in clinical practice as well as in future research studies.
Resumo:
Animal models of acquired epilepsies aim to provide researchers with tools for use in understanding the processes underlying the acquisition, development and establishment of the disorder. Typically, following a systemic or local insult, vulnerable brain regions undergo a process leading to the development, over time, of spontaneous recurrent seizures. Many such models make use of a period of intense seizure activity or status epilepticus, and this may be associated with high mortality and/or global damage to large areas of the brain. These undesirable elements have driven improvements in the design of chronic epilepsy models, for example the lithium-pilocarpine epileptogenesis model. Here, we present an optimised model of chronic epilepsy that reduces mortality to 1% whilst retaining features of high epileptogenicity and development of spontaneous seizures. Using local field potential recordings from hippocampus in vitro as a probe, we show that the model does not result in significant loss of neuronal network function in area CA3 and, instead, subtle alterations in network dynamics appear during a process of epileptogenesis, which eventually leads to a chronic seizure state. The model’s features of very low mortality and high morbidity in the absence of global neuronal damage offer the chance to explore the processes underlying epileptogenesis in detail, in a population of animals not defined by their resistance to seizures, whilst acknowledging and being driven by the 3Rs (Replacement, Refinement and Reduction of animal use in scientific procedures) principles.
Resumo:
Neuropsychiatry services provide specialist input into the assessment and management of behavioral symptoms associated with a range of neurological conditions, including epilepsy. Despite the centrality of epilepsy to neuropsychiatry and the recent expansion of neuropsychiatry service provision, little is known about the clinical characteristics of patients with epilepsy who are routinely seen by a specialist neuropsychiatry service. This retrospective study filled this gap by retrospectively evaluating a naturalistic series of 60 consecutive patients with epilepsy referred to and assessed within a neuropsychiatry setting. Fifty-two patients (86.7%) had active epilepsy and were under the ongoing care of the referring neurologist for seizure management. The majority of patients (N = 42; 70.0%) had a diagnosis of localization-related epilepsy, with temporal lobe epilepsy as the most common epilepsy type (N = 37; 61.7%). Following clinical assessment, 39 patients (65.0%) fulfilled formal diagnostic criteria for at least one psychiatric disorder; nonepileptic attack disorder (N = 37; 61.7%), major depression (N = 23; 38.3%), and generalized anxiety disorder (N = 16; 26.7%) were the most commonly diagnosed comorbidities. The clinical characteristics of patients seen in specialist neuropsychiatry settings are in line with the results from previous studies in neurology clinics in terms of both epilepsy and psychiatric comorbidity. Our findings confirm the need for the development and implementation of structured care pathways for the neuropsychiatric aspects of epilepsy, with focus on comorbid nonepileptic attacks and affective and anxiety symptoms. This is of particular importance in consideration of the impact of behavioral symptoms on patients' health-related quality of life.