895 resultados para faith based organisation
Resumo:
A decade ago, Queensland University of Technology (QUT) developed an innovative annual Courses Performance Report, but through incremental change, this report became quite labour-intensive. A new risk-based approach to course quality assurance, that consolidates voluminous data in a simple dashboard, responds to the changing context of the higher education sector. This paper will briefly describe QUT’s context and outline the second phase of implementation of this new approach to course quality assurance. The main components are: Individual Course Reports (ICRs), the Consolidated Courses Performance Report (CCPR), Underperforming Courses Status Update and the Strategic Faculty Courses Update (SFCU). These components together form a parsimonious and strategic annual cycle of reporting and place QUT in a positive position to respond to future sector change
Resumo:
The detection of voice activity is a challenging problem, especially when the level of acoustic noise is high. Most current approaches only utilise the audio signal, making them susceptible to acoustic noise. An obvious approach to overcome this is to use the visual modality. The current state-of-the-art visual feature extraction technique is one that uses a cascade of visual features (i.e. 2D-DCT, feature mean normalisation, interstep LDA). In this paper, we investigate the effectiveness of this technique for the task of visual voice activity detection (VAD), and analyse each stage of the cascade and quantify the relative improvement in performance gained by each successive stage. The experiments were conducted on the CUAVE database and our results highlight that the dynamics of the visual modality can be used to good effect to improve visual voice activity detection performance.
Resumo:
When classifying a signal, ideally we want our classifier to trigger a large response when it encounters a positive example and have little to no response for all other examples. Unfortunately in practice this does not occur with responses fluctuating, often causing false alarms. There exists a myriad of reasons why this is the case, most notably not incorporating the dynamics of the signal into the classification. In facial expression recognition, this has been highlighted as one major research question. In this paper we present a novel technique which incorporates the dynamics of the signal which can produce a strong response when the peak expression is found and essentially suppresses all other responses as much as possible. We conducted preliminary experiments on the extended Cohn-Kanade (CK+) database which shows its benefits. The ability to automatically and accurately recognize facial expressions of drivers is highly relevant to the automobile. For example, the early recognition of “surprise” could indicate that an accident is about to occur; and various safeguards could immediately be deployed to avoid or minimize injury and damage. In this paper, we conducted initial experiments on the extended Cohn-Kanade (CK+) database which shows its benefits.
Resumo:
The previous investigations have shown that the modal strain energy correlation method, MSEC, could successfully identify the damage of truss bridge structures. However, it has to incorporate the sensitivity matrix to estimate damage and is not reliable in certain damage detection cases. This paper presents an improved MSEC method where the prediction of modal strain energy change vector is differently obtained by running the eigensolutions on-line in optimisation iterations. The particular trail damage treatment group maximising the fitness function close to unity is identified as the detected damage location. This improvement is then compared with the original MSEC method along with other typical correlation-based methods on the finite element model of a simple truss bridge. The contributions to damage detection accuracy of each considered mode is also weighed and discussed. The iterative searching process is operated by using genetic algorithm. The results demonstrate that the improved MSEC method suffices the demand in detecting the damage of truss bridge structures, even when noised measurement is considered.
Resumo:
Infrastructure organisations are operating in an increasingly challenging business environment as a result of globalisation, privatisation and deregulation. Under such circumstances, asset managers need to manage their infrastructure assets effectively in order to contribute to the overall performance of their organisation. In an external business environment that is constantly changing, extant literature on strategic management advocates a resourced--�]based view (RBV) approach that focuses on factors internal to the organisation such as resources and capabilities to sustain organisation performance. The aim of this study is to explore the core capabilities needed in the management of infrastructure assets. Using a multiple case study research strategy focusing on transport infrastructure, this research firstly examines the goals of infrastructure asset management and their alignment with broader corporate goals of an infrastructure organisation. It then examines the strategic infrastructure asset management processes that are needed to achieve these goals. The core capabilities that can support the strategic infrastructure asset management processes are then identified. This research produced a number of findings. First, it provided empirical evidence that asset management goals are being pursued with the aim of supporting the broader business goals of infrastructure organisations. Second, through synthesising the key asset management processes deemed necessary to achieve the asset management goals, a strategic infrastructure asset management model is proposed. Third, it identified five core capabilities namely stakeholder connectivity, cross-functional, relational, technology absorptive and integrated information management capability as central to executing the strategic infrastructure asset management processes well. These findings culminate in the development of a capability model to improve the performance of infrastructure assets.
Resumo:
The ad hoc networks are vulnerable to attacks due to distributed nature and lack of infrastructure. Intrusion detection systems (IDS) provide audit and monitoring capabilities that offer the local security to a node and help to perceive the specific trust level of other nodes. The clustering protocols can be taken as an additional advantage in these processing constrained networks to collaboratively detect intrusions with less power usage and minimal overhead. Existing clustering protocols are not suitable for intrusion detection purposes, because they are linked with the routes. The route establishment and route renewal affects the clusters and as a consequence, the processing and traffic overhead increases due to instability of clusters. The ad hoc networks are battery and power constraint, and therefore a trusted monitoring node should be available to detect and respond against intrusions in time. This can be achieved only if the clusters are stable for a long period of time. If the clusters are regularly changed due to routes, the intrusion detection will not prove to be effective. Therefore, a generalized clustering algorithm has been proposed that can run on top of any routing protocol and can monitor the intrusions constantly irrespective of the routes. The proposed simplified clustering scheme has been used to detect intrusions, resulting in high detection rates and low processing and memory overhead irrespective of the routes, connections, traffic types and mobility of nodes in the network. Clustering is also useful to detect intrusions collaboratively since an individual node can neither detect the malicious node alone nor it can take action against that node on its own.
Resumo:
Purpose – The purpose of this paper is to examine the buyer awareness and acceptance of environmental and energy efficiency measures in the New Zealand residential property markets. This study aims to provide a greater understanding of consumer behaviour in the residential property market in relation to green housing issues ---------- Design/methodology/approach – The paper is based on an extensive survey of Christchurch real estate offices and was designed to gather data on the factors that were considered important by buyers in the residential property market. The survey was designed to allow these factors to be analysed on a socio-economic basis and to compare buyer behaviour based on property values. ---------- Findings – The results show that regardless of income levels, buyers still consider that the most important factor in the house purchase decision is the location of the property and price. Although the awareness of green housing issues and energy efficiency in housing is growing in the residential property market, it is only a major consideration for young and older buyers in the high income brackets and is only of some importance for all other buyer sectors of the residential property market. Many of the voluntary measures introduced by Governments to improve the energy efficiency of residential housing are still not considered important by buyers, indicating that a more mandatory approach may have to be undertaken to improve energy efficiency in the established housing market, as these measures are not valued by the buyer. ---------- Originality/value – The paper confirms the variations in real estate buyer behaviour across the full range of residential property markets and the acceptance and awareness of green housing issues and measures. These results would be applicable to most established and transparent residential property markets.
Resumo:
Cloud computing is a latest new computing paradigm where applications, data and IT services are provided over the Internet. Cloud computing has become a main medium for Software as a Service (SaaS) providers to host their SaaS as it can provide the scalability a SaaS requires. The challenges in the composite SaaS placement process rely on several factors including the large size of the Cloud network, SaaS competing resource requirements, SaaS interactions between its components and SaaS interactions with its data components. However, existing applications’ placement methods in data centres are not concerned with the placement of the component’s data. In addition, a Cloud network is much larger than data center networks that have been discussed in existing studies. This paper proposes a penalty-based genetic algorithm (GA) to the composite SaaS placement problem in the Cloud. We believe this is the first attempt to the SaaS placement with its data in Cloud provider’s servers. Experimental results demonstrate the feasibility and the scalability of the GA.
Resumo:
TCP is a dominant protocol for consistent communication over the internet. It provides flow, congestion and error control mechanisms while using wired reliable networks. Its congestion control mechanism is not suitable for wireless links where data corruption and its lost rate are higher. The physical links are transparent from TCP that takes packet losses due to congestion only and initiates congestion handling mechanisms by reducing transmission speed. This results in wasting already limited available bandwidth on the wireless links. Therefore, there is no use to carry out research on increasing bandwidth of the wireless links until the available bandwidth is not optimally utilized. This paper proposed a hybrid scheme called TCP Detection and Recovery (TCP-DR) to distinguish congestion, corruption and mobility related losses and then instructs the data sending host to take appropriate action. Therefore, the link utilization is optimal while losses are either due to high bit error rate or mobility.
Resumo:
A pragmatic method for assessing the accuracy and precision of a given processing pipeline required for converting computed tomography (CT) image data of bones into representative three dimensional (3D) models of bone shapes is proposed. The method is based on coprocessing a control object with known geometry which enables the assessment of the quality of resulting 3D models. At three stages of the conversion process, distance measurements were obtained and statistically evaluated. For this study, 31 CT datasets were processed. The final 3D model of the control object contained an average deviation from reference values of −1.07±0.52 mm standard deviation (SD) for edge distances and −0.647±0.43 mm SD for parallel side distances of the control object. Coprocessing a reference object enables the assessment of the accuracy and precision of a given processing pipeline for creating CTbased 3D bone models and is suitable for detecting most systematic or human errors when processing a CT-scan. Typical errors have about the same size as the scan resolution.
Resumo:
This paper presents a formulation of image-based visual servoing (IBVS) for a spherical camera where coordinates are parameterized in terms of colatitude and longitude: IBVSSph. The image Jacobian is derived and simulation results are presented for canonical rotational, translational as well as general motion. Problems with large rotations that affect the planar perspective form of IBVS are not present on the sphere, whereas the desirable robustness properties of IBVS are shown to be retained. We also describe a structure from motion (SfM) system based on camera-centric spherical coordinates and show how a recursive estimator can be used to recover structure. The spherical formulations for IBVS and SfM are particularly suitable for platforms, such as aerial and underwater robots, that move in SE(3).
Resumo:
In this paper a generic decoupled imaged-based control scheme for calibrated cameras obeying the unified projection model is proposed. The proposed decoupled scheme is based on the surface of object projections onto the unit sphere. Such features are invariant to rotational motions. This allows the control of translational motion independently from the rotational motion. Finally, the proposed results are validated with experiments using a classical perspective camera as well as a fisheye camera mounted on a 6 dofs robot platform.
Resumo:
This paper proposes the use of optical flow from a moving robot to provide force feedback to an operator's joystick to facilitate collision free teleoperation. Optic flow is measured by wide angle cameras on board the vehicle and used to generate a virtual environmental force that is reflected to the user through the joystick, as well as feeding back into the control of the vehicle. The coupling between optical flow (velocity) and force is modelled as an impedance - in this case an optical impedance. We show that the proposed control is dissipative and prevents the vehicle colliding with the environment as well as providing the operator with a natural feel for the remote environment. The paper focuses on applications to aerial robotics vehicles, however, the ideas apply directly to other force actuated vehicles such as submersibles or space vehicles, and the authors believe the approach has potential for control of terrestrial vehicles and even teleoperation of manipulators. Experimental results are provided for a simulated aerial robot in a virtual environment controlled by a haptic joystick.
Resumo:
This paper considers the question of designing a fully image-based visual servo control for a class of dynamic systems. The work is motivated by the ongoing development of image-based visual servo control of small aerial robotic vehicles. The kinematics and dynamics of a rigid-body dynamical system (such as a vehicle airframe) maneuvering over a flat target plane with observable features are expressed in terms of an unnormalized spherical centroid and an optic flow measurement. The image-plane dynamics with respect to force input are dependent on the height of the camera above the target plane. This dependence is compensated by introducing virtual height dynamics and adaptive estimation in the proposed control. A fully nonlinear adaptive control design is provided that ensures asymptotic stability of the closed-loop system for all feasible initial conditions. The choice of control gains is based on an analysis of the asymptotic dynamics of the system. Results from a realistic simulation are presented that demonstrate the performance of the closed-loop system. To the author's knowledge, this paper documents the first time that an image-based visual servo control has been proposed for a dynamic system using vision measurement for both position and velocity.
Resumo:
This paper presents research that is being conducted by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) with the aim of investigating the use of wireless sensor networks for automated livestock monitoring and control. It is difficult to achieve practical and reliable cattle monitoring with current conventional technologies due to challenges such as large grazing areas of cattle, long time periods of data sampling, and constantly varying physical environments. Wireless sensor networks bring a new level of possibilities into this area with the potential for greatly increased spatial and temporal resolution of measurement data. CSIRO has created a wireless sensor platform for animal behaviour monitoring where we are able to observe and collect information of animals without significantly interfering with them. Based on such monitoring information, we can identify each animal's behaviour and activities successfully