1000 resultados para estabilidade estrutural


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To obtain a process stability and a quality weld bead it is necessary an adequate parameters set: base current and time, pulse current and pulse time, because these influence the mode of metal transfer and the weld quality in the MIG-P, sometimes requiring special sources with synergistic modes with external control for this stability. This work aims to analyze and compare the effects of pulse parameters and droplet size in arc stability in MIG-P, four packets of pulse parameters were analysed: Ip = 160 A, tp = 5.7 ms; Ip = 300 A and tp = 2 ms, Ip = 350 A, tp = 1.2 ms and Ip = 350 A, tp = 0.8 ms. Each was analyzed with three different drop diameters: drop with the same diameter of the wire electrode; droplet diameter larger drop smaller than the diameter of the wire electrode. For purposes of comparison the same was determined relation between the average current and welding speed was determined generating a constant (Im / Vs = K) for all parameters. Welding in flat plate by simple deposition for the MIG-P with a distance beak contact number (DBCP) constant was perfomed subsequently making up welding in flat plate by simple deposition with an inclination of 10 degrees to vary the DBCP, where by assessment on how the MIG-P behaved in such a situation was possible, in addition to evaluating the MIG-P with adaptive control, in order to maintain a constant arc stability. Also high speed recording synchronized with acquiring current x voltage (oscillogram) was executed for better interpretation of the transfer mechanism and better evaluation in regard to the study of the stability of the process. It is concluded that parameters 3 and 4 exhibited greater versatility; diameters drop equal to or slightly less than the diameter of the wire exhibited better stability due to their higher frequency of detachment, and the detachment of the drop base does not harm the maintenance the height of the arc

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Com o objetivo de avaliar o efeito do manejo do solo na estabilidade de agregados de um Nitossolo Vermelho distroférrico, localizado na Fazenda Experimental Lageado da FCA/UNESP, em Botucatu - SP, amostraram-se, em outubro de 2001, três sistemas de manejo de solo: (i) mata (MA), (ii) preparo convencional por 10 anos seguido de semeadura direta por 12 anos (PC/SD) e (iii) preparo convencional por 22 anos (PC), em quatro camadas: 0,0-0,10; 0,10-0,20; 0,20-0,30 e 0,30-0,40 m. O delineamento experimental empregado foi o inteiramente casualizado, com três repetições. As amostragens foram feitas após a cultura do milho (safra 2000-2001). As amostras foram submetidas às análises físicas e químicas, e as médias, comparadas pelo teste de Tukey. O diâmetro médio ponderado dos agregados (DMP), o índice de estabilidade dos agregados (IEA) e a percentagem de agregados em classes de diâmetro médio foram obtidos com os resultados do peneiramento obtidos pelo método por via úmida. O diâmetro médio ponderado e o índice de estabilidade dos agregados foram menores para o preparo convencional do solo. Os três sistemas de manejo apresentaram maior percentagem de agregados com diâmetro entre 7,93 e 2,00 mm. A substituição do preparo convencional pela semeadura direta favoreceu a estabilidade dos agregados do solo. O diâmetro médio ponderado, o índice de estabilidade de agregados e a percentagem de agregados por classe de diâmetro médio evidenciaram diferenças entre os sistemas de manejo do solo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo desse trabalho foi avaliar, em solo compactado, a estabilidade dos agregados influenciada pelo cultivo de espécies de cobertura em esquema de rotações de culturas, em sistema de semeadura direta, mediante o efeito da escarificação mecânica. As rotações de culturas repetidas por três anos consecutivos envolveram o cultivo de triticale e girassol, no outono-inverno, associados ao cultivo de milheto, de sorgo forrageiro e de Crotalária júncea como plantas de cobertura, antecedendo o da soja (cultura de verão). No tratamento envolvendo a escarificação mecânica, a área permaneceu em pousio entre os cultivos de outono-inverno e de verão. O experimento foi realizado na Fazenda Experimental Lageado (Botucatu-SP), nos anos agrícolas de 2003/2004, 2004/2005 e 2005/2006. O delineamento experimental foi o de blocos ao acaso, com quatro repetições, em esquema de parcelas subdivididas. As amostras para a análise da estabilidade de agregados foram coletadas nas profundidades de 0 a 0,05 m e de 0,05 a 0,10 m após o manejo das plantas de cobertura em dezembro de 2003 e de 2005. Logo no primeiro ano de instalação do experimento, o cultivo de triticale resultou em maior porcentagem de agregados com mais de 2 mm, maior DMG e maior DMP na camada de 0 a 5 cm, além de maior DMP na camada de 0,05 a 0,10 m. Já a escarificação do solo e a ausência do cultivo de plantas de cobertura proporcionaram menor porcentagem de agregados maiores que 2 mm e menor DMP na camada de 0,05 a 0,10 m. A estabilidade dos agregados foi influenciada pela rotação de culturas, sendo maior na camada de 0 a 0,05 m e de 0,05 a 0,10 m quando o triticale foi introduzido como espécie de outono-inverno.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work is the addition of a metallic ion, of the metal Manganese, in a clay of Rio Grande do Norte state for structural ceramics use, the objective this study was to assess the evolution of ceramic properties. The clay was characterized by Chemical and Thermal analysis and Xray difraction. The metallic ion was added in the clay as aqueous solutions at concentrations of 100, 150 and 200 mg / L. The molded by extrusion and the burned were temperatures at 850, 950, 1050 and 1150 º C. Was made Chemical Analysis and investigated the following parameters environmental and ceramic: Solubility, Colour, Linear Retraction (%), Water Absorption (%), Gresification Curves, Apparent Porosity (%), Apparent Specific Mass (g/cm3) and Flexion Rupture Module (kgf/cm2). The results showed that increasing the concentration of metallic ion, properties such as Apparent Porosity (%), Water Absorption (%) decreases and the Flexion Rupture Module (kgf/cm2) increases with increasing temperature independent of the concentration of the ion. The gresification curves showed that the optimum firing temperatures were in the range between 950 and 1050 ° C. The evaluation of the properties showed that the ceramic material can be studied its use in solid brick and ceramic materials with structural function of filling. The results of solubility showed that the addition of ion offers no risk to the environment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In energy systems, the balance of entrances, exits and losses are fundamental to rationalize the energy consumption, independently of the source (sun, natural gas, wind, water, firewood or oil). This estimate is important so much in the phase of project of the facilities, as in the exploration or operation. In the project phase it indicates the energy needs of the process and the contribution of the energy in the cost of the product and the capacity of storage of the fuel and in the operation phase it allows to evaluate the use of the energy in the process of it burns, showing the weak points that should suffer intervention to improve the efficiency. With this tool, it can be implemented routines of calculation of thermal balances in ovens of it burns of structural ceramic, in way to generate an optimized mathematical model for application in the current and promising structural ceramic brazilian industry. The ceramic oven in study is located in the metropolitan area of Natal (Rio Grande do Norte) and it is a continuous oven of the type wagons tunnel, converted of firewood for natural gas and it produces blocks of red ceramic. The energy balance was applied in the oven tunnel before and after the conversion and made the comparisons of the energy efficiencies (it burns to the firewood and it burns to natural gas), what showed that the gaseous fuel is more efficient when we burn structural ceramic in ovens tunnels. When we burn natural gas, the requested energy is smaller and better used. Tests were accomplished in the burned product that showed the best quality of the burned brick with natural gas. That quality improvement makes possible to accomplish new interventions for the most rational use of the energy in the oven tunnel of the Ceramic in study and in the industries of structural ceramic of the whole Brazil, that need control tools of burning and of quality

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Beziehung zwischen Literatur und Gesellschaft wurden, im Laufe der Jahrhunderte, aus unterschiedlichen Perspektiven analysiert. Die Wissenschaftler analysieren manchmal die Aspekten der sozialen Realität, sie betonen manchmal die Natur der literarischen Werk. Wir glauben, dass Antonio Candido einen Gleichgewichtszustand erreicht, als er das Konzept der strukturellen Reduktion oder Formalisierung entwickelt. Nämlich, der Prozess, bei dem die menschliche und soziale Leben zu einem Bestandteil der literarischen Struktur wird. Der Autor tritt eine Einbahnstraße und er kann Daten aus der sozialen Ordnung aufholen, ohne dabei die Materialität des Textes den Augen verlieren. Und das sind die theoretische Annahmen, die die Entwicklung dieser Arbeit leiten. Wir wollen zu zeigen, dass die Struktur der mamediana Lyrik aufdeckt, signifikante Daten der Gesellschaft, in der der Autore eingefügt wurde enthüllt. Folglich, wir analysieren soziale Thema, das sein Werk durchzieht. Zuerst, wir untersuchen, wie Zila Mamede den Alltag der Gesellschaft vertreten. Von der strukturellen Organisation der Gedichte, wir erkennen, das die Episode aus kleiner Städte ein Akt des Widerstands gegen die fragmentierte Profil der kapitalistischen Gesellschaf sind. Das ist, warum sie doch eng mit der Idee der Tradition erscheinen. Die dichotome Beziehung zwischen den regionalen Daten und der Element der Modernisierung etabliert, sie wird durch die Organisation des Raumes verstärkt. Während die Stadt bei konkrete gesellschaftliche Ordnung Spitzenbeträge verweist, hat die Landschaft eine harmonische und warme Form. Allgemeinen, die moderne Stadt von Zila Mamede geformt, ist eine Abbild der Industriegesellschaft. Die Bilder die Landschaft sind ein Gegenmittel gegen die Feindseligkeiten Merkmale der neuen urbanen Zustand. So, die Landschaft hat die Funktion von Umstrukturierung der Persönlichkeit des Einzelnen durch die Erfahrung der großen Städte betroffen verdinglichenden. Der Konflikt, der durch das lyrische mamediana läuft, sind Reflexionen des Prozesses der Modernisierung der Stadt Natal, ihres eigenen Landes die politische Instabilität, sie durch verschiedene staatliche Programme ging, während Der Autor seine literarische Tätigkeit verfolgt

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron nitrite films, with hundred of nanometers thick, were deposited using the Cathodic cage plasma nitriding method, with a N2/H2 plasma, over a common glass substract. The structure, surface morphology and magnetic properties were investigated using X-ray diffractometry (XRD), atomic force microscopy (AFM) and vibrating sample magnetometer (VSM). XRD shows the formation of γ FeN phase and a combination of ζFe2N + ɛFe3N phases. The film s saturation magnetization and coercivity depends on morphology, composition, grain size and treatment temperature. Temperature raising from 250 ºC to 350 ºC were followed by an increase in saturation magnetization and film s surface coercivity on the parallel direction in relative proportion. This fact can be attributed to the grain sizes and to the different phases formed, since iron rich fases, like the ɛFe3N phase, emerges more frequently on more elevated treatment s temperature. Using this new and reasonably low cost method, it was possible to deposit films with both good adhesion and good magnetic properties, with wide application in magnetic devices

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metalic oxides have been studies due to differents applications as materials semiconductor in solar cells, catalysts, full cells and, resistors. Titanium dioxide (TiO2) has a high electric conductivity due to oxygen vacancies. The Ce(SO4)2.2H2O doped samples TiO2 and TiO2 pure was obtained sol-gel process, and characterized by X-ray diffractometry,thermal analysis, and impedance spectroscopy. The X-ray diffraction patterns for TiO2 pure samples shows at 700°C anatase phase is absent, and only the diffraction peaks of rutile phase are observed. However, the cerium doped samples only at 900°C rutile in the phase present with peaks of cerium dioxide (CeO2). The thermal analysis of the TiO2 pure and small concentration cerium doped samples show two steps weight loss corresponding to water of hydration and chemisorbed. To larger concentration cerium doped samples were observed two steps weight loss in the transformation of the doped cerium possible intermediate species and SO3. Finally, two steps weight loss the end products CeO2 and SO3 are formed. Analyse electric properties at different temperatures and concentration cerium doped samples have been investigated by impedance spectroscopy. It was observed that titanium, can be substituted by cerium, changing its electric properties, and increased thermal stability of TiO2 anatase structure

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biodiesel is defined as the mono-alkyl ester derived from long-chain fatty acids, from renewable sources such as vegetable oils or animal fat, whose use is associated with the replacement of fossil fuels in diesel engine cycle. The biodiesel is susceptible to oxidation when exposed to air and this process of oxidation affects the quality of fuel, mainly due to long periods of storage. Because of this, the oxidation stability has been the focus of numerous researches since it directly affects the producers, distributors and users of fuel. One of the possibilities to increase the resistance of biodiesel is the autoxidation treatment with inhibitors of oxidation. The antioxidants can be used as potential inhibitors of the effects of oxidation on the kinematic viscosity and the index of acidity of biodiesel, thereby increasing oxidative stability. This work aims to examine the efficiency of antioxidants, α-tocopherol and butylated hydroxy-toluene (BHT), added the biodiesel content of remembrance through Pressurized-Differential Scanning Calorimetry (P-DSC), Thermogravimetry (TG) and Petrology. The results showed that the use of antioxidant BHT, at the concentration of 2000ppm, increased resistance to oxidation of the biodiesel and oxidative induction time (OIT), which is a better result as antioxidant than the α-tocopherol. With the thermogravimetric analysis, it was observed that the biodiesel presented an initial decomposition temperature of lower tendency than that of oil, demonstrating to be more volatile, bearing great similarity to the diesel and being characterized as an alternative fuel. The rheological analysis indicated that each sample of biodiesel behaved as a Newtonian fluid

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The search for new sources of environmentally friendly energy is growing every day. Among these alternative energies, biodiesel is a biofuel that has had prominence in world production. In Brazil, law 11.097, determine that all diesel sold in the country must be made by mixing diesel/biodiesel. The latter called BX, , where X represents the percent volume of biodiesel in the diesel oil, as specified by the ANP. In order to guarantee the quality of biodiesel and its mixtures, the main properties which should be controlled are the thermal and oxidative stability. These properties depend mainly of the chemical composition on the raw materials used to prepare the biodiesel. This dissertation aims to study the overall thermal and oxidative stability of biodiesel derived from cotton seed oil, sunflower oil, palm oil and beef tallow, as well as analyze the properties of the blends made from mineral oil and biodiesel in proportion B10. The main physical-chemical properties of oils and animal fat, their respective B100 and blends were determined. The samples were characterized by infrared and gas chromatography (GC). The study of thermal and oxidative stability were performed by thermogravimetry (TG), pressure differential scanning calorimeter (PDSC) and Rancimat. The obtained biodiesel samples are within the specifications established by ANP Resolution number 7/2008. In addition, all the blends and mineral diesel analyzed presented in conformed withthe ANP Regularion specifications number 15/2006. The obtained results from TG curves data indicated that the cotton biodiesel is the more stable combustible. In the kinetic study, we obtained the following order of apparent activation energy for the samples: biodiesel from palm oil > sunflower biodiesel > tallow biodiesel > cotton biodiesel. In terms of the oxidative stability, the two methods studied showed that biodiesel from palm oil is more stable then the tallow. Within the B100 samples studied only the latter were tound to be within the standard required by ANP resolution N° 7. Testing was carried out according to the EN14112. This higher stability its chemical composition

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sweeteners provide a pleasant sensation of sweetness that helps the sensory quality of the human diet, can be divided into natural sweeteners such as fructose, galactose, glucose, lactose and sucrose, and articial sweeteners such as aspartame, cyclamate and saccharin. This work aimed to study the thermal stability of natural and artificial sweeteners in atmospheres of nitrogen and syntetic air using thermogravimetry (TG), derivative thermogravimetry (DTG), Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC). Among the natural sweeteners analyzed showed higher thermal stability for the lactose and sucrose, which showed initial decomposition temperatures near 220 ° C, taking advantage of the lactose has a higher melting point (213 ° C) compared to sucrose (191 ° C). The lower thermal stability was observed for fructose, it has the lowest melting point (122 °C) and the lower initial decomposition temperature (170 °C). Of the artificial sweeteners studied showed higher thermal stability for sodium saccharin, which had the highest melting point (364 ° C) as well as the largest initial decomposition temperature (466 ° C under nitrogen and 435 ° C in air). The lower thermal stability was observed for aspartame, which showed lower initial decomposition temperature (158 ° C under nitrogen and 170 ° C under air). For commercial sweeteners showed higher thermal stability for the sweeteners L and C, which showed initial temperature of thermal decomposition near 220 ° C and melting points near 215 ° C. The lower thermal stability was observed for the sweetener P, which showed initial decomposition temperature at 160 ° C and melting point of 130 °C. Sweeteners B, D, E, I, J, N and O had low thermal stability, with the initial temperature of decomposition starts near 160 °C, probably due to the presence of aspartame, even if they have as the main constituent of the lactose, wich is the most stable of natural sweeteners. According to the results we could also realize that all commercial sweeteners are in its composition by at least a natural sweeteners and are always found in large proportions, and lactose is the main constituent of 60% of the total recorded

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesoporous molecular sieves of MCM-41 type are considered as promising support for metal in the refining processes of petroleum-based materials as catalysts and adsorbents for environmental protection. In this work, mesoporous molecular sieves MCM-41 were modified with different rare earth ions (La, Eu e Yb) for the obtaining nanostrutured materials with catalytic properties. The catalysts were synthesized by the hydrothermal method at 100oC for 120 h, presenting, all the samples, in the gel of synthesis molar ratio Si/Ln = 50. The obtained materials after calcination at 500oC for 2 h were characterized by XRD, surface area BET, TG/DTG, FTIR, and hydrothermal stability at 700ºC. The XRD analysis of the catalysts indicated that the materials containing rare earth presented characteristic hexagonal structure of the mesoporous materials of the type MCM-41. The TG curves showed that the decomposition of the structural template occurs in the materials at temperatures lower than 500oC. The samples presented variations as the specific superficial area, average diameter of pores and thickness of the silica wall, as a function of the nature of the rare earth impregnated in the mesoporous material. Hydrotermal stability was evaluated through the exposition of the materials to water vapour at 700°C. The thiophene adsorptions reach a maximum at 80% of conversion and incorporation of the rare earths showed influence in the process. Adsorption capacity followed the sequence: Yb-MCM-41 < La-MCM-41 < Eu-MCM-41 < MCM-41