714 resultados para erbium-doped fiber laser (EDFL)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report a new method for fabricating rare-earth-doped silica glasses for laser materials obtained by sintering nanoporous silica glasses impregnated with rare-earth-doped ions. The fabricated materials have no residual pores and show good optical and mechanical properties. Good performance from a Nd3+-doped silica microchip laser operating at 1.064 mum is successfully demonstrated, suggesting that the fabricated silica glasses have potential for use as active materials for high-power solid-state lasers. (C) 2005 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Passive Q-switching of a diode-pumped Yb:LYSO laser at 1060 nm with a Yb3+ ions-doped CaF2 crystal without the excited-state absorption (ESA) was demonstrated. An average output power of 174 mW with pulse duration of 5.6 mu s and repetition rate of 27 kHz have been obtained under the unoptimized conditions. And the Q-switching conversion efficiency was as high as 51.7%. (c) 2007 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper reports that the TM3+:Lu2SiO5 (Tm:LSO) crystal is grown by Czochralski technique. The room-temperature absorption spectra of Tm:LSO crystal are measured on a b-cut sample with 4 at.% thulium. According to the obtained Judd-Ofelt intensity parameters Omega(2)=9.3155 x 10(-20) cm(2), Omega(4)=8.4103 x 10(-20) cm(2), Omega(6)=1.5908 x 10(-20) cm(2), the fluorescence lifetime is calculated to be 2.03 ms for F-3(4) -> H-3(6) transition, and the integrated emission cross section is 5.81 x 10(-18) cm(2). Room-temperature laser action near 2 mu m under diode pumping is experimentally evaluated in Tm:LSO. An optical-optical conversion efficiency of 9.1% and a slope efficiency of 16.2% are obtained with continuous-wave maximum output power of 0.67 W. The emission wavelengths of Tm:LSO laser are centred around 2.06 mu m with spectral bandwidth of similar to 13.6 nm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Siloxane Polymer exhibits low loss in the 800-1500 nm range which varies between 0.01 and 0.66 dB cm1. It is for such low loss the material is one of the most promising candidates in the application of engineering passive and active optical devices [1, 2]. However, current polymer fabrication techniques do not provide a methodology which allows high structurally solubility of Er3+ ions in siloxane matrix. To address this problem, Yang et al.[3] demonstrated a channel waveguide amplifier with Nd 3+-complex doped polymer, whilst Wong and co-workers[4] employed Yb3+ and Er3+ co-doped polymer hosts for increasing the gain. In some recent research we demonstrated pulsed laser deposition of Er-doped tellurite glass thin films on siloxane polymer coated silica substrates[5]. Here an alternative methodology for multilayer polymer-glass composite thin films using Er3+ - Yb3+ co-doped phosphate modified tellurite (PT) glass and siloxane polymer is proposed by adopting combinatorial pulsed laser deposition (PLD). © 2011 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Over the past decades mode-locked fibre lasers have been extensively refined and developed, with most research efforts focussing on employing rare-earth doped fibres as the active elements [1]. This presents the problem that operation is limited to regions of the spectrum where such elements exhibit gain [1]. Raman amplification in silica fibre is an attractive way to overcome this spectral limitation, with gain available across the entire transparency window (300 nm - 2300 nm) [2-4]. There have been a number of reports utilising Raman gain in ultrashort pulse sources [2-4], however none using a broadband saturable absorber, such as carbon nanotubes [5-7] and graphene [7-9]. A broadband saturable absorber is an essential pre-requisite in order to fully exploit the wavelength flexibility provided by the Raman gain in short pulse mode-locked fiber lasers. © 2011 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode-locked and single-longitudinal-mode waveguide lasers, manufactured by femtosecond laser writing in Er-Yb-doped phosphate glasses, are presented. Transform-limited 1.6-ps pulses and a cw output power exceeding 50 mW have been obtained in the two regimes. © 2007 Optical Society of America.