872 resultados para environmental knowledge
Resumo:
Australian climate, soils and agricultural management practices are significantly different from those of the northern hemisphere nations. Consequently, experimental data on greenhouse gas production from European and North American agricultural soils and its interpretation are unlikely to be directly applicable to Australian systems.
Resumo:
Civic participation of young people around the world is routinely described in deficit terms, as they are labelled apathetic, devoid of political knowledge, disengaged from the community and self-absorbed (Andolina, 2002; Weller, 2006). This paper argues that the connectivity of time, space and social values (Lefebvre, 1991; Soja, 1996) are integral to understanding the performances of young people as civic subjects. Today’s youth negotiate unstable social, economic and environmental conditions, new technologies and new forms of community. Loyalty, citizenship and notions of belonging take on new meanings in these changing global conditions. Using the socio-spatial theories of Lefebvre and Foucault, and the tools of critical discourse analysis, this paper argues that the chronotope, or time/space relationship of universities, produces student citizens who, in resistance to a complex global society, create a cocooned space which focuses on moral and spiritual values that can be enacted on a personal level.
Resumo:
Previous research suggests that soil organic C pools may be a feature of semiarid regions that are particularly sensitive to climatic changes. We instituted an 18-mo experiment along an elevation gradient in northern Arizona to evaluate the influence of temperature, moisture, and soil C pool size on soil respiration. Soils, from underneath different free canopy types and interspaces of three semiarid ecosystems, were moved upslope and/or downslope to modify soil climate. Soils moved downslope experienced increased temperature and decreased precipitation, resulting in decreased soil moisture and soil respiration las much as 23 acid 20%, respectively). Soils moved upslope to more mesic, cooler sites had greater soil water content and increased rates of soil respiration las much as 40%), despite decreased temperature. Soil respiration rates normalized for total C were not significantly different within any of the three incubation sites, indicating that under identical climatic conditions, soil respiration is directly related to soil C pool size for the incubated soils. Normalized soil respiration rates between sites differed significantly for all soil types and were always greater for soils incubated under more mesic, but cooler, conditions. Total soil C did not change significantly during the experiment, but estimates suggest that significant portions of the rapidly cycling C pool were lost. While long-term decreases in aboveground and belowground detrital inputs may ultimately be greater than decreased soil respiration, the initial response to increased temperature and decreased precipitation in these systems is a decrease in annual soil C efflux.
Resumo:
Carbon pools and fluxes were quantified along an environmental gradient in northern Arizona. Data are presented on vegetation, litter, and soil C pools and soil CO2 fluxes from ecosystems ranging from shrub-steppe through woodlands to coniferous forest and the ecotones in between. Carbon pool sizes and fluxes in these semiarid ecosystems vary with temperature and precipitation and are strongly influenced by canopy cover. Ecosystem respiration is approximately 50 percent greater in the more mesic, forest environment than in the dry shrub-steppe environment. Soil respiration rates within a site vary seasonally with temperature but appear to be constrained by low soil moisture during dry summer months, when approximately 75% of total annual soil respiration occurs. Total annual amount of CO2 respired across all sites is positively correlated with annual precipitation and negatively correlated with temperature. Results suggest that changes in the amount and periodicity of precipitation will have a greater effect on C pools and fluxes than will changes in temperature :in the semiarid Southwestern United States.
Resumo:
Landscape scale environmental gradients present variable spatial patterns and ecological processes caused by climate, topography and soil characteristics and, as such, offer candidate sites to study environmental change. Data are presented on the spatial pattern of dominant species, biomass, and carbon pools and the temporal pattern of fluxes across a transitional zone shifting from Great Basin Desert scrub, up through pinyon-juniper woodlands and into ponderosa pine forest and the ecotones between each vegetation type. The mean annual temperature (MAT) difference across the gradient is approximately 3 degrees C from bottom to top (MAT 8.5-5.5) and annual precipitation averages from 320 to 530 mm/yr, respectively. The stems of the dominant woody vegetation approach a random spatial pattern across the entire gradient, while the canopy cover shows a clustered pattern. The size of the clusters increases with elevation according to available soil moisture which in turn affects available nutrient resources. The total density of woody species declines with increasing soil moisture along the gl-adient, but total biomass increases. Belowground carbon and nutrient pools change from a heterogenous to a homogenous distribution on either side of the woodlands. Although temperature controls the: seasonal patterns of carbon efflux from the soils, soil moisture appears to be the primary driving variable, but response differs underneath the different dominant species, Similarly, decomposition of dominant litter occurs faster-at the cooler and more moist sites, but differs within sites due to litter quality of the different species. The spatial pattern of these communities provides information on the direction of future changes, The ecological processes that we documented are not statistically different in the ecotones as compared to the: adjoining communities, but are different at sites above the woodland than those below the woodland. We speculate that an increase in MAT will have a major impact on C pools and C sequestering and release processes in these semiarid landscapes. However, the impact will be primarily related to moisture availability rather than direct effects of an increase in temperature. (C) 1998 Elsevier Science B.V.
Resumo:
Marinas currently exist primarily to service recreational boats, and these vessels are a potential cause of both problems and opportunities in environmental management. Thus, on the one hand, destructive fuel and other pollutants may be expelled, boat wakes can cause littoral soil erosion, physical damage results from collisions with marine life, and litter and noise pollution occur in otherwise pristine habitat. Boats also provide access to otherwise inaccessible natural environments for educational and other management reasons. In this study, boat traffic at three large marinas located along the Queensland coastline has been field surveyed for introductory information. No attempt was made at this juncture to survey the behaviour of the boat crews and passengers (concerning actual destinations, activities on board, etc. or to survey the recreational boat industry. Such studies rely on boat registration records and personal questionnaires. Some other surveys relating to fishing draw on boat ramp surveys and direct submissions by recreational fishers; these provide some data on daily usage of boat ramps, but without particular attention to boats. We believe field observations of overall boat activities in the water are necessary for environmental management purposes. The aim of the survey was to provide information to help prioritize the potential impacts that boats’ activities have on the surrounding natural environment. Any impact by boats will be a product of their numbers, size, frequency of movement, carrying capacity and routes/destinations. The severity of impacts will dictate the appropriate management action.
Resumo:
Sustainability has been increasingly recognised as an integral part of highway infrastructure development. In practice however, the fact that financial return is still a project’s top priority for many, environmental aspects tend to be overlooked or considered as a burden, as they add to project costs. Sustainability and its implications have a far-reaching effect on each project over time. Therefore, with highway infrastructure’s long-term life span and huge capital demand, the consideration of environmental cost/ benefit issues is more crucial in life-cycle cost analysis (LCCA). To date, there is little in existing literature studies on viable estimation methods for environmental costs. This situation presents the potential for focused studies on environmental costs and issues in the context of life-cycle cost analysis. This paper discusses a research project which aims to integrate the environmental cost elements and issues into a conceptual framework for life cycle costing analysis for highway projects. Cost elements and issues concerning the environment were first identified through literature. Through questionnaires, these environmental cost elements will be validated by practitioners before their consolidation into the extension of existing and worked models of life-cycle costing analysis (LCCA). A holistic decision support framework is being developed to assist highway infrastructure stakeholders to evaluate their investment decision. This will generate financial returns while maximising environmental benefits and sustainability outcome.
Resumo:
This paper investigates the Cooroy Mill community precinct (Sunshine Coast, Queensland), as a case study, seeking to understand the way local dynamics interplay and work with the community strengths to build a governance model of best fit. As we move to an age of ubiquitous computing and creative economies, the definition of public place and its governance take on new dimensions, which – while often utilizing models of the past – will need to acknowledge and change to the direction of the future. This paper considers a newly developed community precinct that has been built on three key principles: to foster creative expression with new media, to establish a knowledge economy in a regional area, and to subscribe to principles of community engagement. The study involved qualitative interviews with key stakeholders and a review of common practice models of governance along a spectrum from community control to state control. The paper concludes with a call for governance structures that are locally situated and tailored, inclusive, engaging, dynamic and flexible in order to build community capacity, encourage creativity, and build knowledge economies within emerging digital media cityscapes.
Resumo:
Seventy-six librarians participated in a series of focus groups in support of research exploring the skills, knowledge and attributes required by the contemporary library and information professional in a world of every changing technology. The project was funded by the Australian Learning and Teaching Council. Text data mining analysis revealed three main thematic clusters (libraries, people, jobs) and one minor thematic cluster (community). Library 2.0 was broadly viewed by participants as being about change whilst librarian 2.0 was perceived by participants as not a new creation but just about good librarian practices. Participants expressed the general belief that personality traits, not just qualifications, were critical to be a successful librarian or information worker in the future.
Resumo:
Following the success of Coalbed Natural Gas (CBNG) operations in the United States, companies in Australia and New Zealand have been actively exploring and developing this technology for the last two decades. In particular, the Bowen and Surat basins in Queensland, Australia, have undergone extensive CBNG development. Unfortunately, awareness of potential environmental problems associated with CBNG abstraction has not been widespread and legislation has at times struggled to keep up with rapid development. In Australia, the combined CBNG resource for both the Bowen and Surat basins has been estimated at approximately 10,500 PJ with gas content as high as 10 m3/tonne of coal. There are no official estimates for the magnitude of the CBNG resource in New Zealand but initial estimates suggest this could be up to 1,300 PJ with gas content ranging from 1 to 5 m3/tonne of coal. In Queensland, depressurization of the Walloon Coal Measures to recover CBNG has the potential to induce drawdown in adjacent deep aquifer systems through intraformational groundwater flow. In addition, CBNG operators have been disposing their co-produced water by using large unlined ponds, which is not the best practice for managing co-produced water. CBNG waters in Queensland have the typical geochemical signature associated with CBNG waters (Van Voast, 2003) and thus have the potential to impair soils and plant growth where land disposal is considered. Water quality from exploration wells in New Zealand exhibit the same characteristics although full scale production has not yet begun. In general, the environmental impacts that could arise from CBNG water extraction depend on the aquifer system, the quantity and quality of produced water, and on the method of treatment and disposal being used. Understanding these impacts is necessary to adequately manage CBNG waters so that environmental effects are minimized; if properly managed, CBNG waters can be used for beneficial applications and can become a valuable resource to stakeholders.
Resumo:
The uncontrolled disposal of solid wastes poses an immediate threat to public health and a long term threat to the environmental well being of future generations. Solid waste is waste resulting from human activities that is solid and unwanted (Peavy et al., 1985). If unmanaged, dumped solid wastes generate liquid and gaseous emissions that are detrimental to the environment. This can lead to a serious form of contamination known as metal contamination, which poses a risk to human health and ecosystems. For example, some heavy metals (cadmium, chromium compounds, and nickel tetracarbonyl) are known to be highly toxic, and are aggressive at elevated concentrations. Iron, copper, and manganese can cause staining, and aluminium causes depositions and discolorations. In addition, calcium and magnesium cause hardness in water causing scale deposition and scum formation. Though not a metal but a metalloid, arsenic is poisonous at relatively high concentrations and when diluted at low concentrations causes skin cancer. Normally, metal contaminants are found in a dissolved form in the liquid percolating through landfills. Because average metal concentrations from full-scale landfills, test cells, and laboratory studies have tended to be generally low, metal contamination originating from landfills is not generally considered a major concern (Kjeldsen et al., 2002; Christensen et al., 1999). However, a number of factors make it necessary to take a closer look at metal contaminants from landfills. One of these factors relates to variability. Landfill leachate can have different qualities depending on the weather and operating conditions. Therefore, at one moment in time, metal contaminant concentrations may be quite low, but at a later time these concentrations could be quite high. Also, these conditions relate to the amount of leachate that is being generated. Another factor is biodiversity. It cannot be assumed that a particular metal contaminant is harmless to flora and fauna (including micro organisms) just because it is harmless to human health. This has significant implications for ecosystems and the environment. Finally, there is the moral factor. Because uncertainty surrounds the potential effects of metal contamination, it is appropriate to take precautions to prevent it from taking place. Consequently, it is necessary to have good scientific knowledge (empirically supported) to adequately understand the extent of the problem and improve the way waste is being disposed of
Resumo:
In the global knowledge economy, knowledge-intensive industries and knowledge workers are extensively seen as the primary factors to improve the welfare and competitiveness of cities. To attract and retain such industries and workers, cities produce knowledge-based urban development strategies, and therefore such strategising has become an important development mechanism for cities and their economies. The paper discusses the critical connections between knowledge city foundations and integrated knowledge-based urban development mechanisms in both the local and regional level. In particular, the paper investigates Brisbane’s knowledge-based urban development strategies that support gentrification, attraction, and retention of investment and talent. Furthermore, the paper develops a knowledge-based urban development assessment framework to provide a clearer understanding of the local and regional policy frameworks, and relevant applications of Brisbane’s knowledge-based urban development experience, in becoming a prosperous knowledge city. The paper, with its knowledge-based urban development assessment framework, scrutinises Brisbane’s four development domains in detail: economy; society; institutional; built and natural environments. As part of the discussion of the case study findings, the paper describes the global orientation of Brisbane within the frame of regional and local level knowledge-based urban development strategies performing well. Although several good practices from Brisbane have already been internationally acknowledged, the research reveals that Brisbane is still in the early stages of its knowledge-based urban development implementation. Consequently, the development of a monitoring system for all knowledge-based urban development at all levels is highly crucial in accurately measuring the success and failure of specific knowledge-based urban development policies, and Brisbane’s progress towards a knowledge city transformation.
Resumo:
An essential challenge for organizations wishing to overcome informational silos is to implement mechanisms that facilitate, encourage and sustain interactions between otherwise disconnected groups. Using three case examples, this paper explores how Enterprise 2.0 technologies achieve such goals, allowing for the transfer of knowledge by tapping into the tacit and explicit knowledge of disparate groups in complex engineering organizations. The paper is intended to be a timely introduction to the benefits and issues associated with the use of Enterprise 2.0 technologies with the aim of achieving the positive outcomes associated with knowledge management
Resumo:
Urban infrastructure along the hard forms such as roads, electricity, water and sewers also includes the soft forms such as research, training, innovation and technology. Knowledge and creativity are keys to soft infrastructure and socioeconomic development. Many city administrations around the world adjust their endogenous development strategies increasingly by investing in soft infrastructure and aiming for a knowledge-based development. At this point, the mapping and management of knowledge asset of cities has become a critical issue for promoting creative urban regions. The chapter scrutinizes the relations between knowledge assets and urban infrastructures and examines the management model to improve soft infrastructure provision.
Resumo:
Background: Sun exposure is the main source of vitamin D. Increasing scientific and media attention to the potential health benefits of sun exposure may lead to changes in sun exposure behaviors. Methods: To provide data that might help frame public health messages, we conducted an online survey among office workers in Brisbane, Australia, to determine knowledge and attitudes about vitamin D and associations of these with sun protection practices. Of the 4,709 people invited to participate, 2,867 (61%) completed the questionnaire. This analysis included 1,971 (69%) participants who indicated that they had heard about vitamin D. Results: Lack of knowledge about vitamin D was apparent. Eighteen percent of people were unaware of the bone benefits of vitamin D but 40% listed currently unconfirmed benefits. Over half of the participants indicated that more than 10 minutes in the sun was needed to attain enough vitamin D in summer, and 28% indicated more than 20 minutes in winter. This was significantly associated with increased time outdoors and decreased sunscreen use. People believing sun protection might cause vitamin D deficiency (11%) were less likely to be frequent sunscreen users (summer odds ratio, 0.63; 95% confidence interval, 0.52-0.75). Conclusions: Our findings suggest that there is some confusion about sun exposure and vitamin D, and that this may result in reduced sun-protective behavior. Impact: More information is needed about vitamin D production in the skin. In the interim, education campaigns need to specifically address the vitamin D issue to ensure that skin cancer incidence does not increase.