885 resultados para empirical shell model
Resumo:
This research study was designed to examine the relationship between globalization as measured by the KOF index, its related forces (economic, political, cultural and technological) and the public provision of higher education. This study is important since globalization is increasingly being associated with changes in critical aspects of higher education. The public provision of education was measured by government expenditure and educational outcomes; that is participation, gender equity and attainment. The study utilized a non-experimental quantitative research design. Data collected from secondary sources for 139 selected countries was analyzed. The countries were geographically distributed and included both developed and developing countries. The choice of countries for inclusion in the study was based on data availability. The data, which was sourced from international organizations such as the United Nations and the World Bank, were examined for different time periods using five year averages. The period covered was 1970 to 2009.^ The relationship between globalization and the higher education variables was examined using cross sectional regression analysis while controlling for economic, political and demographic factors. The major findings of the study are as follows. For the two spending models, only one revealed a significant relationship between globalization and education with the R 2 s ranging from .222 to .448 over the period. This relationship was however negative indicating that as globalization increased, spending on higher education declined. However, for the education outcomes models, this relationship was not significant. For the sub-indices of globalization, only the political dimension showed significance as shown in the spending model. Political globalization was significant for six periods with R2 s ranging from .31 to .52.^ The study concluded that the results are mixed for both the spending and outcome models. It also found no robust effects of globalization on government education provision. This finding is not surprising given the existing literature which sees mixed results on the social impact of globalization.^
Resumo:
Software engineering researchers are challenged to provide increasingly more powerful levels of abstractions to address the rising complexity inherent in software solutions. One new development paradigm that places models as abstraction at the forefront of the development process is Model-Driven Software Development (MDSD). MDSD considers models as first class artifacts, extending the capability for engineers to use concepts from the problem domain of discourse to specify apropos solutions. A key component in MDSD is domain-specific modeling languages (DSMLs) which are languages with focused expressiveness, targeting a specific taxonomy of problems. The de facto approach used is to first transform DSML models to an intermediate artifact in a HLL e.g., Java or C++, then execute that resulting code.^ Our research group has developed a class of DSMLs, referred to as interpreted DSMLs (i-DSMLs), where models are directly interpreted by a specialized execution engine with semantics based on model changes at runtime. This execution engine uses a layered architecture and is referred to as a domain-specific virtual machine (DSVM). As the domain-specific model being executed descends the layers of the DSVM the semantic gap between the user-defined model and the services being provided by the underlying infrastructure is closed. The focus of this research is the synthesis engine, the layer in the DSVM which transforms i-DSML models into executable scripts for the next lower layer to process.^ The appeal of an i-DSML is constrained as it possesses unique semantics contained within the DSVM. Existing DSVMs for i-DSMLs exhibit tight coupling between the implicit model of execution and the semantics of the domain, making it difficult to develop DSVMs for new i-DSMLs without a significant investment in resources.^ At the onset of this research only one i-DSML had been created for the user- centric communication domain using the aforementioned approach. This i-DSML is the Communication Modeling Language (CML) and its DSVM is the Communication Virtual machine (CVM). A major problem with the CVM's synthesis engine is that the domain-specific knowledge (DSK) and the model of execution (MoE) are tightly interwoven consequently subsequent DSVMs would need to be developed from inception with no reuse of expertise.^ This dissertation investigates how to decouple the DSK from the MoE and subsequently producing a generic model of execution (GMoE) from the remaining application logic. This GMoE can be reused to instantiate synthesis engines for DSVMs in other domains. The generalized approach to developing the model synthesis component of i-DSML interpreters utilizes a reusable framework loosely coupled to DSK as swappable framework extensions.^ This approach involves first creating an i-DSML and its DSVM for a second do- main, demand-side smartgrid, or microgrid energy management, and designing the synthesis engine so that the DSK and MoE are easily decoupled. To validate the utility of the approach, the SEs are instantiated using the GMoE and DSKs of the two aforementioned domains and an empirical study to support our claim of reduced developmental effort is performed.^
Resumo:
The purpose of this study was to empirically investigate the adoption of retail electronic commerce (REC). REC is a business transaction which takes place over the Internet between a casual consumer and a firm. The consumer has no long-term relationship with the firm, orders a good or service, and pays with a credit card. To date, most REC applications have not been profitable. To build profitable REC applications a better understanding of the system's users is required. The research model hypothesizes that the level of REC buying is dependent upon the Buying Characteristics of Internet Use and Search Experience plus the Channel Characteristics of Beliefs About Internet Vendors and Beliefs About Internet Security. The effect of these factors is modified by Time. Additional research questions ask about the different types of REC buyers, the differences between these groups, and how these groups evolved over time. To answer these research questions I analyzed publically available data collected over a three-year period by the Georgia Institute of Technology Graphics and Visualization Unit over the Internet. Findings indicate the model best predicts Number of Purchases in a future period, and that Buyer Characteristics are most important to this determination. Further, this model is evolving over Time making Buyer Characteristics predict Number of Purchases better in more recent survey administrations. Buyers clustered into five groups based on level of buying and move through various levels and buy increasing Number of Purchases over time. This is the first large scale research project to investigate the evolution of REC. This implications are significant. Practitioners with casual consumer customers need to deploy a finely tuned REC strategy, understand their buyers, capitalize on the company reputation on the Internet, install an Internet-compatible infrastructure, and web-enable order-entry/inventory/fulfillment/ shipping applications. Researchers might wish to expand on the Buyer Characteristics of the model and/or explore alternative dependent variables. Further, alternative theories such as Population Ecology or Transaction Cost Economics might further illuminate this new I.S. research domain.
Resumo:
The theoretical construct of control has been defined as necessary (Etzioni, 1965), ubiquitous (Vickers, 1967), and on-going (E. Langer, 1983). Empirical measures, however, have not adequately given meaning to this potent construct, especially within complex organizations such as schools. Four stages of theory-development and empirical testing of school building managerial control using principals and teachers working within the nation's fourth largest district are presented in this dissertation as follows: (1) a review and synthesis of social science theories of control across the literatures of organizational theory, political science, sociology, psychology, and philosophy; (2) a systematic analysis of school managerial activities performed at the building level within the context of curricular and instructional tasks; (3) the development of a survey questionnaire to measure school building managerial control; and (4) initial tests of construct validity including inter-item reliability statistics, principal components analyses, and multivariate tests of significance. The social science synthesis provided support of four managerial control processes: standards, information, assessment, and incentives. The systematic analysis of school managerial activities led to further categorization between structural frequency of behaviors and discretionary qualities of behaviors across each of the control processes and the curricular and instructional tasks. Teacher survey responses (N=486) reported a significant difference between these two dimensions of control, structural frequency and discretionary qualities, for standards, information, and assessments, but not for incentives. The descriptive model of school managerial control suggests that (1) teachers perceive structural and discretionary managerial behaviors under information and incentives more clearly than activities representing standards or assessments, (2) standards are primarily structural while assessments are primarily qualitative, (3) teacher satisfaction is most closely related to the equitable distribution of incentives, (4) each of the structural managerial behaviors has a qualitative effect on teachers, and that (5) certain qualities of managerial behaviors are perceived by teachers as distinctly discretionary, apart from school structure. The variables of teacher tenure and school effectiveness reported significant effects on school managerial control processes, while instructional levels (elementary, junior, and senior) and individual school differences were not found to be significant for the construct of school managerial control.
Resumo:
After a series of major storms over the last 20 years, the state of financing for U.S. natural disaster insurance has undergone substantial disruptions causing many federal and state backed programs against residential property damage to become severally underfunded. In order to regain actuarial soundness, policy makers have proposed a shift to a system that reflects risk-based pricing for property insurance. We examine survey responses from 1394 single-family homeowners in the state of Florida for support of several natural disaster mitigation policy reforms. Utilizing a partial proportional odds model we test for effects of location, risk perception, socio-economic and housing characteristics on support for policy reforms. Our findings suggest residents across the state, not just risk-prone homeowners, support the current subsidized model. We also examine several other policy questions from the survey to verify our initial results. Finally, the implications of our findings are discussed to provide inputs to policymakers.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
In longitudinal data analysis, our primary interest is in the regression parameters for the marginal expectations of the longitudinal responses; the longitudinal correlation parameters are of secondary interest. The joint likelihood function for longitudinal data is challenging, particularly for correlated discrete outcome data. Marginal modeling approaches such as generalized estimating equations (GEEs) have received much attention in the context of longitudinal regression. These methods are based on the estimates of the first two moments of the data and the working correlation structure. The confidence regions and hypothesis tests are based on the asymptotic normality. The methods are sensitive to misspecification of the variance function and the working correlation structure. Because of such misspecifications, the estimates can be inefficient and inconsistent, and inference may give incorrect results. To overcome this problem, we propose an empirical likelihood (EL) procedure based on a set of estimating equations for the parameter of interest and discuss its characteristics and asymptotic properties. We also provide an algorithm based on EL principles for the estimation of the regression parameters and the construction of a confidence region for the parameter of interest. We extend our approach to variable selection for highdimensional longitudinal data with many covariates. In this situation it is necessary to identify a submodel that adequately represents the data. Including redundant variables may impact the model’s accuracy and efficiency for inference. We propose a penalized empirical likelihood (PEL) variable selection based on GEEs; the variable selection and the estimation of the coefficients are carried out simultaneously. We discuss its characteristics and asymptotic properties, and present an algorithm for optimizing PEL. Simulation studies show that when the model assumptions are correct, our method performs as well as existing methods, and when the model is misspecified, it has clear advantages. We have applied the method to two case examples.
Resumo:
Trials in a temporal two-interval forced-choice discrimination experiment consist of two sequential intervals presenting stimuli that differ from one another as to magnitude along some continuum. The observer must report in which interval the stimulus had a larger magnitude. The standard difference model from signal detection theory analyses poses that order of presentation should not affect the results of the comparison, something known as the balance condition (J.-C. Falmagne, 1985, in Elements of Psychophysical Theory). But empirical data prove otherwise and consistently reveal what Fechner (1860/1966, in Elements of Psychophysics) called time-order errors, whereby the magnitude of the stimulus presented in one of the intervals is systematically underestimated relative to the other. Here we discuss sensory factors (temporary desensitization) and procedural glitches (short interstimulus or intertrial intervals and response bias) that might explain the time-order error, and we derive a formal model indicating how these factors make observed performance vary with presentation order despite a single underlying mechanism. Experimental results are also presented illustrating the conventional failure of the balance condition and testing the hypothesis that time-order errors result from contamination by the factors included in the model.
Resumo:
The standard difference model of two-alternative forced-choice (2AFC) tasks implies that performance should be the same when the target is presented in the first or the second interval. Empirical data often show “interval bias” in that percentage correct differs significantly when the signal is presented in the first or the second interval. We present an extension of the standard difference model that accounts for interval bias by incorporating an indifference zone around the null value of the decision variable. Analytical predictions are derived which reveal how interval bias may occur when data generated by the guessing model are analyzed as prescribed by the standard difference model. Parameter estimation methods and goodness-of-fit testing approaches for the guessing model are also developed and presented. A simulation study is included whose results show that the parameters of the guessing model can be estimated accurately. Finally, the guessing model is tested empirically in a 2AFC detection procedure in which guesses were explicitly recorded. The results support the guessing model and indicate that interval bias is not observed when guesses are separated out.
Resumo:
The organisational decision making environment is complex, and decision makers must deal with uncertainty and ambiguity on a continuous basis. Managing and handling decision problems and implementing a solution, requires an understanding of the complexity of the decision domain to the point where the problem and its complexity, as well as the requirements for supporting decision makers, can be described. Research in the Decision Support Systems domain has been extensive over the last thirty years with an emphasis on the development of further technology and better applications on the one hand, and on the other hand, a social approach focusing on understanding what decision making is about and how developers and users should interact. This research project considers a combined approach that endeavours to understand the thinking behind managers’ decision making, as well as their informational and decisional guidance and decision support requirements. This research utilises a cognitive framework, developed in 1985 by Humphreys and Berkeley that juxtaposes the mental processes and ideas of decision problem definition and problem solution that are developed in tandem through cognitive refinement of the problem, based on the analysis and judgement of the decision maker. The framework facilitates the separation of what is essentially a continuous process, into five distinct levels of abstraction of manager’s thinking, and suggests a structure for the underlying cognitive activities. Alter (2004) argues that decision support provides a richer basis than decision support systems, in both practice and research. The constituent literature on decision support, especially in regard to modern high profile systems, including Business Intelligence and Business analytics, can give the impression that all ‘smart’ organisations utilise decision support and data analytics capabilities for all of their key decision making activities. However this empirical investigation indicates a very different reality.
Resumo:
This dissertation contributes to the rapidly growing empirical research area in the field of operations management. It contains two essays, tackling two different sets of operations management questions which are motivated by and built on field data sets from two very different industries --- air cargo logistics and retailing.
The first essay, based on the data set obtained from a world leading third-party logistics company, develops a novel and general Bayesian hierarchical learning framework for estimating customers' spillover learning, that is, customers' learning about the quality of a service (or product) from their previous experiences with similar yet not identical services. We then apply our model to the data set to study how customers' experiences from shipping on a particular route affect their future decisions about shipping not only on that route, but also on other routes serviced by the same logistics company. We find that customers indeed borrow experiences from similar but different services to update their quality beliefs that determine future purchase decisions. Also, service quality beliefs have a significant impact on their future purchasing decisions. Moreover, customers are risk averse; they are averse to not only experience variability but also belief uncertainty (i.e., customer's uncertainty about their beliefs). Finally, belief uncertainty affects customers' utilities more compared to experience variability.
The second essay is based on a data set obtained from a large Chinese supermarket chain, which contains sales as well as both wholesale and retail prices of un-packaged perishable vegetables. Recognizing the special characteristics of this particularly product category, we develop a structural estimation model in a discrete-continuous choice model framework. Building on this framework, we then study an optimization model for joint pricing and inventory management strategies of multiple products, which aims at improving the company's profit from direct sales and at the same time reducing food waste and thus improving social welfare.
Collectively, the studies in this dissertation provide useful modeling ideas, decision tools, insights, and guidance for firms to utilize vast sales and operations data to devise more effective business strategies.
Resumo:
Software engineering researchers are challenged to provide increasingly more pow- erful levels of abstractions to address the rising complexity inherent in software solu- tions. One new development paradigm that places models as abstraction at the fore- front of the development process is Model-Driven Software Development (MDSD). MDSD considers models as first class artifacts, extending the capability for engineers to use concepts from the problem domain of discourse to specify apropos solutions. A key component in MDSD is domain-specific modeling languages (DSMLs) which are languages with focused expressiveness, targeting a specific taxonomy of problems. The de facto approach used is to first transform DSML models to an intermediate artifact in a HLL e.g., Java or C++, then execute that resulting code. Our research group has developed a class of DSMLs, referred to as interpreted DSMLs (i-DSMLs), where models are directly interpreted by a specialized execution engine with semantics based on model changes at runtime. This execution engine uses a layered architecture and is referred to as a domain-specific virtual machine (DSVM). As the domain-specific model being executed descends the layers of the DSVM the semantic gap between the user-defined model and the services being provided by the underlying infrastructure is closed. The focus of this research is the synthesis engine, the layer in the DSVM which transforms i-DSML models into executable scripts for the next lower layer to process. The appeal of an i-DSML is constrained as it possesses unique semantics contained within the DSVM. Existing DSVMs for i-DSMLs exhibit tight coupling between the implicit model of execution and the semantics of the domain, making it difficult to develop DSVMs for new i-DSMLs without a significant investment in resources. At the onset of this research only one i-DSML had been created for the user- centric communication domain using the aforementioned approach. This i-DSML is the Communication Modeling Language (CML) and its DSVM is the Communication Virtual machine (CVM). A major problem with the CVM’s synthesis engine is that the domain-specific knowledge (DSK) and the model of execution (MoE) are tightly interwoven consequently subsequent DSVMs would need to be developed from inception with no reuse of expertise. This dissertation investigates how to decouple the DSK from the MoE and sub- sequently producing a generic model of execution (GMoE) from the remaining appli- cation logic. This GMoE can be reused to instantiate synthesis engines for DSVMs in other domains. The generalized approach to developing the model synthesis com- ponent of i-DSML interpreters utilizes a reusable framework loosely coupled to DSK as swappable framework extensions. This approach involves first creating an i-DSML and its DSVM for a second do- main, demand-side smartgrid, or microgrid energy management, and designing the synthesis engine so that the DSK and MoE are easily decoupled. To validate the utility of the approach, the SEs are instantiated using the GMoE and DSKs of the two aforementioned domains and an empirical study to support our claim of reduced developmental effort is performed.
Resumo:
The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak, and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene rainfall optimum in the different sub-monsoon systems. They rather indicate locally inhomogeneous rainfall changes and show, that single palaeo-records should not be used to characterise the rainfall change and monsoon evolution for entire monsoon sub-systems.
Resumo:
This thesis uses models of firm-heterogeneity to complete empirical analyses in economic history and agricultural economics. In Chapter 2, a theoretical model of firm heterogeneity is used to derive a statistic that summarizes the welfare gains from the introduction of a new technology. The empirical application considers the use of mechanical steam power in the Canadian manufacturing sector during the late nineteenth century. I exploit exogenous variation in geography to estimate several parameters of the model. My results indicate that the use of steam power resulted in a 15.1 percent increase in firm-level productivity and a 3.0-5.2 percent increase in aggregate welfare. Chapter 3 considers various policy alternatives to price ceiling legislation in the market for production quotas in the dairy farming sector in Quebec. I develop a dynamic model of the demand for quotas with farmers that are heterogeneous in their marginal cost of milk production. The econometric analysis uses farm-level data and estimates a parameter of the theoretical model that is required for the counterfactual experiments. The results indicate that the price of quotas could be reduced to the ceiling price through a 4.16 percent expansion of the aggregate supply of quotas, or through moderate trade liberalization of Canadian dairy products. In Chapter 4, I study the relationship between farm-level productivity and participation in the Commercial Export Milk (CEM) program. I use a difference-in-difference research design with inverse propensity weights to test for causality between participation in the CEM program and total factor productivity (TFP). I find a positive correlation between participation in the CEM program and TFP, however I find no statistically significant evidence that the CEM program affected TFP.
Resumo:
Models of the air-sea transfer velocity of gases may be either empirical or mechanistic. Extrapolations of empirical models to an unmeasured gas or to another water temperature can be erroneous if the basis of that extrapolation is flawed. This issue is readily demonstrated for the most well-known empirical gas transfer velocity models where the influence of bubble-mediated transfer, which can vary between gases, is not explicitly accounted for. Mechanistic models are hindered by an incomplete knowledge of the mechanisms of air-sea gas transfer. We describe a hybrid model that incorporates a simple mechanistic view—strictly enforcing a distinction between direct and bubble-mediated transfer—but also uses parameterizations based on data from eddy flux measurements of dimethyl sulphide (DMS) to calibrate the model together with dual tracer results to evaluate the model. This model underpins simple algorithms that can be easily applied within schemes to calculate local, regional, or global air-sea fluxes of gases.