997 resultados para egg volume
Resumo:
A new finite volume method for solving the incompressible Navier--Stokes equations is presented. The main features of this method are the location of the velocity components and pressure on different staggered grids and a semi-Lagrangian method for the treatment of convection. An interpolation procedure based on area-weighting is used for the convection part of the computation. The method is applied to flow through a constricted channel, and results are obtained for Reynolds numbers, based on half the flow rate, up to 1000. The behavior of the vortex in the salient corner is investigated qualitatively and quantitatively, and excellent agreement is found with the numerical results of Dennis and Smith [Proc. Roy. Soc. London A, 372 (1980), pp. 393-414] and the asymptotic theory of Smith [J. Fluid Mech., 90 (1979), pp. 725-754].
Resumo:
Review of: Vardah Shiloh, Millon 'Ivri-'Arami-'Aššuri bs-Lahag Yihude Zaxo (A New Neo-Aramaic Dictionary: Jewish Dialect of Zakho). Volume I: 'alef—nun\ Volume II: samex-tav. V. Shilo (16 Ben-Gamla Street), Jerusalem 1995. Pp. xiv + 488 (Vol. I); 489-963 (Vol. II). (Modern Hebrew, Zakho Jewish Neo-Aramaic). Hbk.
Resumo:
This paper presents the computational modelling of welding phenomena within a versatile numerical framework. The framework embraces models from both the fields of computational fluid dynamics (CFD) and computational solid mechanics (CSM). With regard to the CFD modelling of the weld pool fluid dynamics, heat transfer and phase change, cell-centred finite volume (FV) methods are employed. Additionally, novel vertex-based FV methods are employed with regard to the elasto-plastic deformation associated with the CSM. The FV methods are included within an integrated modelling framework, PHYSICA, which can be readily applied to unstructured meshes. The modelling techniques are validated against a variety of reference solutions.
Resumo:
Computational results for the microwave heating of a porous material are presented in this paper. Combined finite difference time domain and finite volume methods were used to solve equations that describe the electromagnetic field and heat and mass transfer in porous media. The coupling between the two schemes is through a change in dielectric properties which were assumed to be dependent both on temperature and moisture content. The model was able to reflect the evolution of temperature and moisture fields as the moisture in the porous medium evaporates. Moisture movement results from internal pressure gradients produced by the internal heating and phase change.
Resumo:
In this paper a continuum model for the prediction of segregation in granular material is presented. The numerical framework, a 3-D, unstructured grid, finite-volume code is described, and the micro-physical parametrizations, which are used to describe the processes and interactions at the microscopic level that lead to segregation, are analysed. Numerical simulations and comparisons with experimental data are then presented and conclusions are drawn on the capability of the model to accurately simulate the behaviour of granular matter during flow.
Resumo:
The first stages in the development of a new design tool, to be used by coastal engineers to improve the efficiency, analysis, design, management and operation of a wide range of coastal and harbour structures, are described. The tool is based on a two-dimensional numerical model, NEWMOTICS-2D, using the volume of fluid (VOF) method, which permits the rapid calculation of wave hydrodynamics at impermeable natural and man-made structures. The critical hydrodynamic flow processes and forces are identified together with the equations that describe these key processes. The different possible numerical approaches for the solution of these equations, and the types of numerical models currently available, are examined and assessed. Preliminary tests of the model, using comparisons with results from a series of hydraulic model test cases, are described. The results of these tests demonstrate that the VOF approach is particularly appropriate for the simulation of the dynamics of waves at coastal structures because of its flexibility in representing the complex free surfaces encountered during wave impact and breaking. The further programme of work, required to develop the existing model into a tool for use in routine engineering design, is outlined.
Resumo:
A three-dimensional finite volume, unstructured mesh (FV-UM) method for dynamic fluid–structure interaction (DFSI) is described. Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, wind response of buildings, flows in elastic pipes and blood vessels. It involves the coupling of fluid flow and structural mechanics, two fields that are conventionally modelled using two dissimilar methods, thus a single comprehensive computational model of both phenomena is a considerable challenge. Until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply. More recently, strategies for solving the full coupling between the fluid and solid mechanics behaviour have been developed. A key contribution has been made by Farhat et al. [Int. J. Numer. Meth. Fluids 21 (1995) 807] employing FV-UM methods for solving the Euler flow equations and a conventional finite element method for the elastic solid mechanics and the spring based mesh procedure of Batina [AIAA paper 0115, 1989] for mesh movement. In this paper, we describe an approach which broadly exploits the three field strategy described by Farhat for fluid flow, structural dynamics and mesh movement but, in the context of DFSI, contains a number of novel features: • a single mesh covering the entire domain, • a Navier–Stokes flow, • a single FV-UM discretisation approach for both the flow and solid mechanics procedures, • an implicit predictor–corrector version of the Newmark algorithm, • a single code embedding the whole strategy.
Resumo:
In this past decade finite volume (FV) methods have increasingly been used for the solution of solid mechanics problems. This contribution describes a cell vertex finite volume discretisation approach to the solution of geometrically nonlinear (GNL) problems. These problems, which may well have linear material properties, are subject to large deformation. This requires a distinct formulation, which is described in this paper together with the solution strategy for GNL problem. The competitive performance for this procedure against the conventional finite element (FE) formulation is illustrated for a three dimensional axially loaded column.
Resumo:
Computational modelling of dynamic fluid-structure interaction (DFSI) is problematical since conventionally computational fluid dynamics (CFD) is solved using finite volume (FV) methods and computational structural mechanics (CSM) is based entirely on finite element (FE) methods. Hence, progress in modelling the emerging multi-physics problem of dynamic fluid-structure interaction in a consistent manner is frustrated and significant problems in computation convergence may be encountered in transferring and filtering data from one mesh and solution procedure to another, unless the fluid-structure coupling is either one way, very weak or both. This paper sets out the solution procedure for modelling the multi-physics dynamic fluid-structure interaction problem within a single software framework PHYSICA, using finite volume, unstructured mesh (FV-UM) procedures and will focus upon some of the problems and issues that have to be resolved for time accurate closely coupled dynamic fluid-structure flutter analysis.
Resumo:
A three-dimensional finite volume, unstructured mesh (FV-UM) method for dynamic fluid–structure interaction (DFSI) is described. Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, wind response of buildings, flows in elastic pipes and blood vessels. It involves the coupling of fluid flow and structural mechanics, two fields that are conventionally modelled using two dissimilar methods, thus a single comprehensive computational model of both phenomena is a considerable challenge. Until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply. More recently, strategies for solving the full coupling between the fluid and solid mechanics behaviour have been developed. A key contribution has been made by Farhat et al. [Int. J. Numer. Meth. Fluids 21 (1995) 807] employing FV-UM methods for solving the Euler flow equations and a conventional finite element method for the elastic solid mechanics and the spring based mesh procedure of Batina [AIAA paper 0115, 1989] for mesh movement. In this paper, we describe an approach which broadly exploits the three field strategy described by Farhat for fluid flow, structural dynamics and mesh movement but, in the context of DFSI, contains a number of novel features: a single mesh covering the entire domain, a Navier–Stokes flow, a single FV-UM discretisation approach for both the flow and solid mechanics procedures, an implicit predictor–corrector version of the Newmark algorithm, a single code embedding the whole strategy.
Resumo:
A three dimensional finite volume, unstructured mesh method for dynamic fluid-structure interation is described. The broad approach is conventional in that the fluid and structure are solved sequentially. The pressure and viscous stresses from the flow algorithm provide load conditions for the solid algorithm, whilst at the fluid structure interface the deformed structure provides boundary condition from the structure to the fluid. The structure algorithm also provides the necessary mesh adaptation for the flow field, the effect of which is accounted for in the flow algorithm. The procedures described in this work have several novel features, namely: * a single mesh covering the entire domain. * a Navier Stokes flow. * a single FV-UM discretisation approach for both the flow and solid mechanics procedures. * an implicit predictor-corrector version of the Newmark algorithm. * a single code embedding the whole strategy. The procedure is illustrated for a three dimensional loaded cantilever in fluid flow.
Resumo:
A procedure for evaluating the dynamic structural response of elastic solid domains is presented. A prerequisite for the analysis of dynamic fluid–structure interaction is the use of a consistent set of finite volume (FV) methods on a single unstructured mesh. This paper describes a three-dimensional (3D) FV, vertex-based method for dynamic solid mechanics. A novel Newmark predictor–corrector implicit scheme was developed to provide time accurate solutions and the scheme was evaluated on a 3D cantilever problem. By employing a small amount of viscous damping, very accurate predictions of the fundamental natural frequency were obtained with respect to both the amplitude and period of oscillation. This scheme has been implemented into the multi-physics modelling software framework, PHYSICA, for later application to full dynamic fluid structure interaction.
Resumo:
A vertex-based finite volume (FV) method is presented for the computational solution of quasi-static solid mechanics problems involving material non-linearity and infinitesimal strains. The problems are analysed numerically with fully unstructured meshes that consist of a variety of two- and threedimensional element types. A detailed comparison between the vertex-based FV and the standard Galerkin FE methods is provided with regard to discretization, solution accuracy and computational efficiency. For some problem classes a direct equivalence of the two methods is demonstrated, both theoretically and numerically. However, for other problems some interesting advantages and disadvantages of the FV formulation over the Galerkin FE method are highlighted.