934 resultados para eccentric muscle contraction
Resumo:
Objective To assess MHC I and II expressions in muscle fibres of juvenile dermatomyositis (JDM) and compare with the expression in polymyositis (PM), dermatomyositis (DM) and dystrophy. Patients and methods Forty-eight JDM patients and 17 controls (8 PM, 5 DM and 4 dystrophy) were studied. The mean age at disease onset was 7.1 +/- 3.0 years and the mean duration of weakness before biopsy was 9.4 +/- 12.9 months. Routine histochemistry and immunohistochemistry (StreptABComplex/HRP) for MHC I and II (Dakopatts) were performed on serial frozen muscle sections in all patients. Mann-Whitney, Kruskal Wallis, chi-square and Fisher`s exact statistical methods were used. Results MHC I expression was positive in 47 (97.9%) JDM cases. This expression was observed independent of time of disease corticotherapy previous to muscle biopsy and to the grading of inflammation observed in clinical, laboratorial and histological parameters. The expression of MHC I was similar on JDM, PM and DM, and lower in dystrophy. On the other hand, MHC II expression was positive in just 28.2% of JDM cases was correlated to histological features as inflammatory infiltrate, increased connective tissue and VAS for global degree of abnormality (p < 0.05). MCH II expression was similar in DM/PM and lower in JDM and dystrophy, and it was based on the frequency of positive staining rather than to the degree of the MCH II expression. Conclusions MHC I expression in muscle fibres is a premature and late marker of JDM patient independent to corticotherapy, and MHC II expression was lower in JDM than in PM and DM.
Resumo:
Objective To study increases in electromyographic (EMG) response from the right and left rectus femoris muscles of individuals with long-term cervical spinal cord injuries after EMG biofeedback treatment. Design Repeated measure trials compared EMG responses before and after biofeedback treatment in patients with spinal cord injuries. Main outcome measures The Neuroeducator was used to analyse and provide feedback of the EMG signal and to measure EMG response. Setting Department of Traumatic Orthopaedics, School of Medicine, University of Sao Paulo, Brazil. Participants Twenty subjects (three men and 17 women), between 21 and 49 years of age, with incomplete spinal cord injury at level C6 or higher (range C2 to C6). Of these subjects, 10 received their spinal cord injuries from motor vehicle accidents, one from a gunshot, five from diving, three from falls and one from spinal disc herniation. Results Significant differences were found in the EMG response of the right rectus femoris muscle between pre-initial (T1), post-initial (T2) and additional (T3) biofeedback treatment with the subjects in a sitting position [mean (standard deviation) T1: 26 mu V (29); T2: 67 mu V (50); T3: 77 mu V (62)]. The mean differences and 95% confidence intervals for these comparisons were as follows: T1 to T2, -40.7 (-53.1 to -29.4); T2 to T3, -9.6 (-26.1 to 2.3). Similar differences were found for the left leg in a sitting position and for both legs in the sit-to-stand condition. Conclusions The EMG responses obtained in this study showed that treatment involving EMG biofeedback significantly increased voluntary EMG responses from right and left rectus femoris muscles in individuals with spinal cord injuries. (C) 2010 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Muscle sympathetic nervous activity in depressed patients before and after treatment with sertraline
Resumo:
Background Sympathetic hyperactivity is one of the mechanisms involved in the increased cardiovascular risk associated with depression, and there is evidence that antidepressants decrease sympathetic activity. Objectives We tested the following two hypotheses: patients with major depressive disorder with high scores of depressive symptoms (HMDD) have augmented muscle sympathetic nervous system activity (MSNA) at rest and during mental stress compared with patients with major depressive disorder with low scores of depressive symptoms (LMDD) and controls; sertraline decreases MSNA in depressed patients. Methods Ten HMDD, nine LMDD and 11 body weight-matched controls were studied. MSNA was directly measured from the peroneal nerve using microneurography for 3 min at rest and 4 min during the Stroop color word test. For the LMDD and HMDD groups, the tests were repeated after treatment with sertraline (103.3 +/- 40 mg). Results Resting MSNA was significantly higher in the HMDD [29.1 bursts/min (SE 2.9)] compared with LMDD [19.9 (1.6)] and controls [22.2 (2.0)] groups (P=0.026 and 0.046, respectively). There was a significant positive correlation between resting MSNA and severity of depression. MSNA increased significantly and similarly during stress in all the studied groups. Sertraline significantly decreased resting MSNA in the LMDD group and MSNA during mental stress in LMDD and HMDD groups. Sertraline significantly decreased resting heart rate and heart rate response to mental stress in the HMDD group. Conclusion Moderate-to-severe depression is associated with increased MSNA. Sertraline treatment reduces MSNA at rest and during mental challenge in depressed patients, which may have prognostic implications in this group. J Hypertens 27:2429-2436 (c) 2009 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
The aim of this study was to evaluate the effect of the pulsed ultrasound therapy (PUT) in stimulating myoregeneration and collagen deposition in an experimental model of lacerative gastrocnemius muscle lesion in 30 Wistar rats. Fifteen rats were treated (TG) daily with 1 MHz pulsed ultrasound (50%) at 0.57 W/cm(2) for 5 min, and 15 were control animals (CG). Muscle samples were analyzed on postoperative days 4, 7 and 14 through H&E, Picrosirius-polarization and immunohistochemistry for desmin. The lesions presented similar inflammatory responses in both treated and control groups. The areal fraction of fibrillar collagen was larger in the TG at 4 days post-operatively (17.53 +/- 6.2% vs 6.79 +/- 1.3%, p = 0.0491), 7 days (31.07 +/- 7.45% vs 12.57 +/- 3.6%, p = 0.0021) and 14 days (30.39 +/- 7.3% vs 19.13 +/- 3.51%, p = 0.0118); the areal fraction of myoblasts and myotubes was larger in the TG at 14 days after surgery (41.66 +/- 2.97% vs 34.83 +/- 3.08%, p = 0.025). Our data suggest that the PUT increases the differentiation of muscular lineage cells, what would favor tissue regeneration. On the other hand, it is also suggested that there is a larger deposition of collagenous fibers, what could mean worse functional performance. However, the percentage of fibers seems to have stabilized at day 7 in TG and kept increasing in CG. Furthermore, the collagen supramolecular organization achieved by the TG is also significant according to the Sirius red staining results. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
There is an intimate relationship between the extracellular matrix (ECM) and smooth muscle cells within the airways. Few studies have comprehensively assessed the composition of different ECM components and its regulators within the airway smooth muscle (ASM) in asthma. With the aid of image analysis, the fractional areas of total collagen and elastic fibres were quantified within the ASM of 35 subjects with fatal asthma (FA) and compared with 10 nonfatal asthma (NFA) patients and 22 nonasthmatic control cases. Expression of collagen I and III, fibronectin, versican, matrix metalloproteinase (MMP)-1, -2, -9 and -12 and tissue inhibitor of metalloproteinase-1 and -2 was quantified within the ASM in 22 FA and 10 control cases. In the large airways of FA cases, the fractional area of elastic fibres within the ASM was increased compared with NFA and controls. Similarly, fibronectin, MMP-9 and MMP-12 were increased within the ASM in large airways of FA cases compared with controls. Elastic fibres were increased in small airways in FA only in comparison with NFA cases. There is altered extracellular matrix composition and a degradative environment within the airway smooth muscle in fatal asthma patients, which may have important consequences for the mechanical and synthetic functions of airway smooth muscle.
Resumo:
Background: Smooth muscle content is increased within the airway wall in patients with asthma and is likely to play a role in airway hyperresponsiveness. However, smooth muscle cells express several contractile and structural proteins, and each of these proteins may influence airway function distinctly. Objective: We examined the expression of contractile and structural proteins of smooth muscle cells, as well as extracellular matrix proteins, in bronchial biopsies of patients with asthma, and related these to lung function, airway hyperresponsiveness, and responses to deep inspiration. Methods: Thirteen patients with asthma (mild persistent, atopic, nonsmoking) participated in this cross-sectional study. FEV1 % predicted, PC20 methacholine, and resistance of the respiratory system by the forced oscillation technique during tidal breathing and deep breath were measured. Within 1 week, a bronchoscopy was performed to obtain 6 bronchial biopsies that were immunuhistochemically stained for alpha-SM-actin, desmin, myosin light chain kinase (MLCK), myosin, calponin, vimentin, elastin, type III collagen, and fibronectin. The level of expression was determined by automated densitometry. Results: PC20 methacholine was inversely related to the expression of alpha-smooth muscle actin (r = -0.62), desmin (r = -0.56), and elastin (r = -0.78). In addition, FEV1% predicted was positively related and deep inspiration-induced bronchodilation inversely related to desmin (r = -0.60), MLCK (r = -0.60), and calponin (r = -0.54) expression. Conclusion: Airway hyperresponsiveness, FEV1% predicted, and airway responses to deep inspiration are associated with selective expression of airway smooth muscle proteins and components of the extracellular matrix.
Resumo:
Asthma is characterised by an increased airway smooth muscle (ASM) area (ASMarea) within the airway wall. The present study examined the relationship of factors including severity and duration of asthma to ASMarea. The perimeter of the basement membrane (PBM) and ASMarea were measured on transverse sections of large and small airways from post mortem cases of fatal (n=107) and nonfatal asthma (n=37) and from control subjects (n=69). The thickness of ASM (ASMarea/PBM) was compared between asthma groups using multivariate linear regression. When all airways were considered together, ASMarea/PBM (in millimetres) was increased in nonfatal (median 0.04; interquartile range 0.013-0.051; p=0.034) and fatal cases of asthma (0.048; 0.025-0.078; p<0.001) compared with controls (0.036; 0.024-0.042). Compared with cases of nonfatal asthma, ASMarea/PBM was greater in cases of fatal asthma in large (p<0.001) and medium (p<0.001), but not small, airways. ASMarea/PBM was not related to duration of asthma, age of onset of asthma, sex or smoking. No effect due to study centre, other than that due to sampling strategy, was found. The thickness of the ASM layer is increased in asthma and is related to the severity of asthma but not its duration.
Resumo:
Burke TN, Franc, a FJR, de Meneses SRF, Cardoso VI, Marques AP: Postural control in elderly persons with osteoporosis: Efficacy of an intervention program to improve balance and muscle strength: A randomized controlled trial. Am J Phys Med Rehabil 2010; 89: 549-556. Objective: To assess the efficacy of an exercise program aiming to improve balance and muscular strength, for postural control and muscular strength of women with osteoporosis. Design: Sample consisted of 33 women with osteoporosis, randomized into one of two groups: intervention group, in which exercises for balance and improvement of muscular strength of the inferior members were performed for 8 wks (n = 17, age 72.8 +/- 3.6 yrs); control group, which was women not practicing exercises (n = 16, age 74.4 +/- 3.7 yrs). At baseline and after 8 wks of treatment, postural control was assessed using a force plate (Balance Master, Neurocom), and muscular strength during ankle dorsiflexion, knee extension, and flexion was assessed by dynamometry. Results: Adherence to the program was 82%. When compared with the control group, individuals in the intervention group significantly improved the center of pressure velocity (P = 0.02) in the modified clinical test of sensory interaction for balance test, center of pressure velocity (P < 0.01), and directional control (P < 0.01) in limits of stability test, isometric force during ankle dorsiflexion (P = 0.01), knee extension (P < 0.01), and knee flexion (P < 0.01). Conclusions: Balance and strength exercises are effective in improving postural control and lower-limb strength in elderly women with osteoporosis.
Resumo:
Mechanisms regulating NADPH oxidase remain open and include the redox chaperone protein disulfide isomerase (PDI). Here, we further investigated PDI effects on vascular NADPH oxidase. VSMC transfected with wild-type PDI (wt-PDI) OF PDI mutated in all four redox cysteines (mut-PDI) enhanced (2.5-fold) basal cellular ROS production and membrane NADPH oxidase activity, with 3-fold increase in Nox1, but not Nox4 mRNA. However, further ROS production, NADPH oxidase activity and Nox1 mRNA increase triggered by angiotensin-II (AngII) were totally lost with PDI overexpression, suggesting preemptive Nox1 activation in such cells. PDI overexpression increased Nox4 mRNA after AngII stimulus, although without parallel ROS increase. We also show that Nox inhibition by the nitric oxide donor GSNO is independent of PDI. PDI silencing decreased specifically Nox1 mRNA and protein, confirming that PDI may regulate Nox1 at transcriptional level in VSMC. Such data further strengthen the role of PDI as novel NADPH oxidase regulator. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The objective of this study was to adapt a model of hind limb immobilization to newly weaned female rats and to determine the morphology of shortened soleus and plantaris muscles. Female Wistar rats were divided into three groups: control zero (n = 3) and control and free (n = 8), animals aged 21 and 31 days, respectively, submitted to no intervention, and immobilized (n = 25), animals aged 21 days submitted to immobilization for 10 days and sacrificed at 31 days of age. The device used for immobilization had advantages such as easy connection, good fit, and low cost. The immobilized rats showed a reduction in muscle fiber area and in connective tissue. The adaptation of this immobilization model originally used for adult rats was an excellent alternative for newly weaned rats and was also efficient in inducing significant hind limb disuse.
Resumo:
The purpose of the present study was to evaluate the intra and interday reliability of surface electromyographic amplitude values of the scapular girdle muscles and upper limbs during 3 isometric closed kinetic chain exercises, involving upper limbs with the fixed distal segment extremity on stable base of support and on a Swiss ball (relatively unstable). Twenty healthy adults performed the exercises push-up, bench-press and wall-press with different effort levels (80% and 100% maximal load). Subjects performed three maximal voluntary contractions (MVC) in muscular testing position of each muscle to obtain a reference value for root mean square (RMS) normalization. Individuals were instructed to randomly perform three isometric contraction series, in which each exercise lasted 6 s with a 2-min resting-period between series and exercises. Intra and interday reliabilities were calculated through the intraclass correlation coefficient (ICC 2.1), standard error of the measurement (SEM). Results indicated an excellent intraday reliability of electromyographic amplitude values (ICC >= 0.75). The interday reliability of normalized RMS values ranged between good and excellent (ICC 0.52-0.98). Finally, it is suggested that the reliability of normalized electromyographic amplitude values of the analyzed muscles present better values during exercises on a stable surface. However, load levels used during the exercises do not seem to have any influence on variability levels, possibly because the loads were quite similar. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Increases in muscular cross-sectional area (CSA) occur in quadriplegics after training, but the effects of neuromuscular electrical stimulation (NMES) along with training are unknown. Thus, we addressed two questions: (1) Does NMES during treadmill gait training increase the quadriceps CSA in complete quadriplegics?; and (2) Is treadmill gait training alone enough to observe an increase in CSA? Fifteen quadriplegics were divided into gait (n = 8) and control (n = 7) groups. The gait group performed training with NMES for 6 months twice a week for 20 minutes each time. After 6 months of traditional therapy, the control group received the same gait training protocol but without NMES for an additional 6 months. Axial images of the thigh were acquired at the beginning of the study, at 6 months (for both groups), and at 12 months for the control group to determine the average quadriceps CSA. After 6 months, there was an increase of CSA in the gait group (from 49.8 +/- A 9.4 cm(2) to 57.3 +/- A 10.3 cm(2)), but not in the control group (from 43.6 +/- A 7.6 cm(2) to 41.8 +/- A 8.4 cm(2)). After another 6 months of gait without NMES in the control group, the CSA did not change (from 41.8 +/- A 8.4 cm(2) to 41.7 +/- A 7.9 cm(2)). The increase in quadriceps CSA after gait training in patients with chronic complete quadriplegia appears associated with NMES.