737 resultados para distributed manufacturing
Resumo:
This paper uses a panel data-fixed effect approach and data collected from Chinese public manufacturing firms between 1999 and 2011 to investigate the impacts of business life cycle stages on capital structure. We find that cash flow patterns capture more information on business life cycle stages than firm age and have a stronger impact on capital structure decision-making. We also find that the adjustment speed of capital structure varies significantly across life cycle stages and that non-sequential transitions over life cycle stages play an important role in the determination of capital structure. Our study indicates that it is important for policy-makers to ensure that products and financial markets are well-balanced.
Resumo:
We present one of the first studies of the use of Distributed Temperature Sensing (DTS) along fibre-optic cables to purposely monitor spatial and temporal variations in ground surface temperature (GST) and soil temperature, and provide an estimate of the heat flux at the base of the canopy layer and in the soil. Our field site was at a groundwater-fed wet meadow in the Netherlands covered by a canopy layer (between 0-0.5 m thickness) consisting of grass and sedges. At this site, we ran a single cable across the surface in parallel 40 m sections spaced by 2 m, to create a 40×40 m monitoring field for GST. We also buried a short length (≈10 m) of cable to depth of 0.1±0.02 m to measure soil temperature. We monitored the temperature along the entire cable continuously over a two-day period and captured the diurnal course of GST, and how it was affected by rainfall and canopy structure. The diurnal GST range, as observed by the DTS system, varied between 20.94 and 35.08◦C; precipitation events acted to suppress the range of GST. The spatial distribution of GST correlated with canopy vegetation height during both day and night. Using estimates of thermal inertia, combined with a harmonic analysis of GST and soil temperature, substrate and soil-heat fluxes were determined. Our observations demonstrate how the use of DTS shows great promise in better characterising area-average substrate/soil heat flux, their spatiotemporal variability, and how this variability is affected by canopy structure. The DTS system is able to provide a much richer data set than could be obtained from point temperature sensors. Furthermore, substrate heat fluxes derived from GST measurements may be able to provide improved closure of the land surface energy balance in micrometeorological field studies. This will enhance our understanding of how hydrometeorological processes interact with near-surface heat fluxes.
Resumo:
This article presents an experimental scalable message driven IoT and its security architecture based on Decentralized Information Flow Control. The system uses a gateway that exports SoA (REST) interfaces to the internet simplifying external applications whereas uses DIFC and asynchronous messaging within the home environment.
Resumo:
The incidence of Listeria monocytogenes in three cheese manufacturing plants from the northeastern region of Sao Paulo, Brazil, was evaluated from October 2008 to September 2009. L. monocytogenes was found in samples from two plants, at percentages of 13.3% (n = 128) and 9.6% (n = 114). Samples of raw and pasteurized milk, water, and Minas Frescal cheese were negative for L. monocyto genes, although the pathogen was isolated from the surface of Prato cheese and in brine from one of the plants evaluated. L. monocytogenes was also isolated from different sites of the facilities, mainly in non food contact surfaces such as drains, floors, and platforms. Serotype 4b was the most predominant in the plants studied. The results of this study indicate the need for control strategies to prevent the dispersion of L. monocytogenes in the environment of cheese manufacturing plants.
Resumo:
Five new species of Paepalanthus section Diphyomene are described and illustrated: P. brevis, P. flexuosus, P. longiciliatus, P. macer, and P. stellatus. Paepalanthus brevis, similar to P. decussus, is easily distinguished by its short reproductive axis, and pilose and mucronate leaves. Paepalanthus flexuosus, morphologically related to P. urbanianus, possesses a distinctive short and tortuous reproductive axis. Paepalanthus longiciliatus, morphologically similar to P. weddellianus, possesses long trichomes on the margins of the reproductive axis bracts, considered a diagnostic feature. Paepalanthus macer shares similarities with P. amoenus, differing by its sulfurous capitula and adpressed reproductive axis bracts. Paepalanthus stellatus also has affinity with P. decussus, but possesses unique, membranaceous, reproductive-axis bracts and a punctual inner-capitulum arrangement of pistillate flowers. Four of the described species are narrowly distributed in the state of Goias, whereas P. brevis is endemic to Distrito Federal. All are considered critically endangered. Detailed comparisons of these species are presented in tables. Comments on phenology, distribution, habitat and etymology, along with an identification key, are provided.
Resumo:
The evolution of commodity computing lead to the possibility of efficient usage of interconnected machines to solve computationally-intensive tasks, which were previously solvable only by using expensive supercomputers. This, however, required new methods for process scheduling and distribution, considering the network latency, communication cost, heterogeneous environments and distributed computing constraints. An efficient distribution of processes over such environments requires an adequate scheduling strategy, as the cost of inefficient process allocation is unacceptably high. Therefore, a knowledge and prediction of application behavior is essential to perform effective scheduling. In this paper, we overview the evolution of scheduling approaches, focusing on distributed environments. We also evaluate the current approaches for process behavior extraction and prediction, aiming at selecting an adequate technique for online prediction of application execution. Based on this evaluation, we propose a novel model for application behavior prediction, considering chaotic properties of such behavior and the automatic detection of critical execution points. The proposed model is applied and evaluated for process scheduling in cluster and grid computing environments. The obtained results demonstrate that prediction of the process behavior is essential for efficient scheduling in large-scale and heterogeneous distributed environments, outperforming conventional scheduling policies by a factor of 10, and even more in some cases. Furthermore, the proposed approach proves to be efficient for online predictions due to its low computational cost and good precision. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper applies the concepts and methods of complex networks to the development of models and simulations of master-slave distributed real-time systems by introducing an upper bound in the allowable delivery time of the packets with computation results. Two representative interconnection models are taken into account: Uniformly random and scale free (Barabasi-Albert), including the presence of background traffic of packets. The obtained results include the identification of the uniformly random interconnectivity scheme as being largely more efficient than the scale-free counterpart. Also, increased latency tolerance of the application provides no help under congestion.
Resumo:
During the last decade, the Internet usage has been growing at an enormous rate which has beenaccompanied by the developments of network applications (e.g., video conference, audio/videostreaming, E-learning, E-Commerce and real-time applications) and allows several types ofinformation including data, voice, picture and media streaming. While end-users are demandingvery high quality of service (QoS) from their service providers, network undergoes a complex trafficwhich leads the transmission bottlenecks. Considerable effort has been made to study thecharacteristics and the behavior of the Internet. Simulation modeling of computer networkcongestion is a profitable and effective technique which fulfills the requirements to evaluate theperformance and QoS of networks. To simulate a single congested link, simulation is run with asingle load generator while for a larger simulation with complex traffic, where the nodes are spreadacross different geographical locations generating distributed artificial loads is indispensable. Onesolution is to elaborate a load generation system based on master/slave architecture.
Resumo:
This thesis is an investigation on the corporate identity of the firm SSAB from a managerial viewpoint (1), the company communication through press releases (2), and the image of the company as portrayed in news press articles (3). The managerial view of the corporate identity is researched through interviews with a communication manager of SSAB (1), the corporate communication is researched through press releases from the company (2) and the image is researched in news press articles (3). The results have been deducted using content analysis. The three dimensions are compared in order to see if the topics are coherent. This work builds on earlier research in corporate identity and image research, stakeholder theory, corporate communication and media reputation theory. This is interesting to research as the image of the company framed by the media affects, among other things, the possibility for the company to attract new talent and employees. If there are different stories, or topics, told in the three dimensions then the future employees may not share the view of the company with the managers in it. The analysis show that there is a discrepancy between the topics on the three dimensions, both between the corporate identity and the communication through press releases, as well as between the communication through press releases and the image in news press articles.
Resumo:
In a global economy, manufacturers mainly compete with cost efficiency of production, as the price of raw materials are similar worldwide. Heavy industry has two big issues to deal with. On the one hand there is lots of data which needs to be analyzed in an effective manner, and on the other hand making big improvements via investments in cooperate structure or new machinery is neither economically nor physically viable. Machine learning offers a promising way for manufacturers to address both these problems as they are in an excellent position to employ learning techniques with their massive resource of historical production data. However, choosing modelling a strategy in this setting is far from trivial and this is the objective of this article. The article investigates characteristics of the most popular classifiers used in industry today. Support Vector Machines, Multilayer Perceptron, Decision Trees, Random Forests, and the meta-algorithms Bagging and Boosting are mainly investigated in this work. Lessons from real-world implementations of these learners are also provided together with future directions when different learners are expected to perform well. The importance of feature selection and relevant selection methods in an industrial setting are further investigated. Performance metrics have also been discussed for the sake of completion.
Resumo:
Messaging middleware provides asynchronous communication between services in distributed environments. However, security, reliability and performance issues compel such middleware to be distributed, and distribution throws up its own problems such as identifying messaging channels which could then be subscribed to. In particular, interested parties need to identify channels defined in remote locations while not knowing details of how they are defined. A common vocabulary using semantic descriptions offers a solution to this problem. In this paper, we describe the design and implementation of federated messaging middleware using semantic description of channels.