986 resultados para diffusion layer
Resumo:
The presently developed two-stage process involves diping the prefired porous disks of n-BaTiO3 in nonaqueous solutions containing Al-buty rate, Ti-isopropoxide, and tetraethyl silicate and subsequent sintering. This leads to uniform distribution of the grain-boundary layer (GBL) modifiers (Al2O3+ TiO2+ SiO2) and better control of the grain size as well as the positive temperature coefficient of resistivity characteristics. The technique is particularly suited for GBL modifiers in low concentrations (< 1%).
Resumo:
The Kelvin–Helmholtz instability has been investigated for the magnetopause boundary‐layer region by the linearized method. The plasma in magnetosheath and magnetopause is assumed to be semi‐infinitely extended homogeneous, nondissipative, and incompressible. It is observed that, if one relation of two plasma speeds on the two sides of the magnetopause, wave number, and boundary‐layer thickness exceeds a certain threshold, the instability sets in. This new analytically sufficient criterion for excitation of instability in the three‐layer plasma flow generalizes the corresponding Chandrasekhar’s instability criterion for two‐layer plasma flow. The known results have been recovered and modified, the new results have been discovered. It is proved that the velocity threshold for the onset of instability is low when the magnitude of the magnetosheath and boundary‐layer region magnetic field and the angle between them are small. Also the threshold depends on the direction of plasma flow. The following results are observed numerically. The growth of the instability is sensitive to the magnetic field direction in the magnetosheath. A slight variation in the magnetic field direction in the second region can substantially change the relative velocity threshold for instability. When the ratio of the density of the second and third layer (magnetosphere) increases or that of the first and third layer decreases, the threshold decreases. Apart from this a necessary criterion for instability is obtained for a particular case.
Resumo:
The broadband aspects of stacked three-layer electromagnetically coupled circular microstrip antenna arrays are investigated experimentally. Experiments carried out on 8-element linear microstrip antenna arrays, using optimized stacked three-layer circular microstrip antenna elements, configured in E- and H-planes, have exhibited an impedance bandwidth of 20 percent, with a high gain and a good pattern shape with sidelobe as well as crosspolarization levels better than -20 dB through a scan angle of 40 deg from the broadside.
Resumo:
A mixed boundary-valued problem associated with the diffusion equation, that involves the physical problem of cooling of an infinite slab in a two-fluid medium, is solved completely by using the Wiener-Hopf technique. An analytical solution is derived for the temperature distribution at the quench fronts being created by two different layers of cold fluids having different cooling abilities moving on the upper surface of the slab at constant speed. Simple expressions are derived for the values of the sputtering temperatures of the slab at the points of contact with the respective layers, assuming one layer of the fluid to be of finite extent and the other of infinite extent. The main problem is solved through a three-part Wiener - Hopf problem of a special type, and the numerical results under certain special circumstances are obtained and presented in the form of a table.
Resumo:
The steady laminar compressible boundary layer flow of an electrically conducting fluid in the stagnation region of a sphere with an applied magnetic field has been studied. The effects of the induced magnetic field, mass transfer, and viscous dissipation have been taken into account. Both isothermal and adiabatic wall conditions have been considered. The governing equations have been solved numerically using a shooting method. The skin friction and heat transfer are found to be strongly affected by the magnetic field, mass transfer, wall temperature and Mach number. It is found that the magnetic field reduces the heat transfer. This is a significant result which can be used in controlling the heat transfer rate. The boundary layer solutions break down as the magnetic parameter tends to a certain critical value.
Resumo:
Molecular dynamics simulations on Xe in NaY and Ar in NaCaA zeolite are reported. Rates of cage-to-cage crossovers in the two zeolites exhibit trends which are contrary to that expected from geometrical considerations. The results suggest the important role of the sorbate-zeolite interactions in determining the molecular sieve properties of zeolites for small sized sorbates. The results are explained in terms of the barrier height for cage-to-cage crossover in the two zeolites.
Resumo:
In the present investigation, unidirectional grinding marks were created on a set of steel plates. Sliding experiments were then conducted with the prepared steel plates using Al-Mg alloy pins and an inclined pin-on-plate sliding tester. The goals of the experiments were to ascertain the influence of inclination angle and grinding mark direction on friction and transfer layer formation during sliding contact. The inclination angle of the plate was held at 0.2 deg, 0.6 deg, 1 deg, 1.4 deg, 1.8 deg, 2.2 deg, and 2.6 deg in the tests. The pins were slid both perpendicular and parallel to the grinding marks direction. The experiments were conducted under both dry and lubricated conditions on each plate in an ambient environment. Results showed that the coefficient of friction and the formation of transfer layer depend on the grinding marks direction and inclination angle of the hard surfaces. For a given inclination angle, under both dry and lubricated conditions, the coefficient of friction and transfer layer formation were found to be greater when the pins slid perpendicular to the unidirectional grinding marks than when the pins slid parallel to the grinding marks. In addition, a stick-slip phenomenon was observed under lubricated conditions at the highest inclination angle for sliding perpendicular to the grinding marks direction. This phenomenon could be attributed to the extent of plane strain conditions taking place at the asperity level during sliding. DOI: 10.1115/1.4002604]
Resumo:
Detailed molecular dynamics simulations of argon in zeolite NaCaA are reported. Thermodynamic, structural, and dynamical properties of the sorbate as a function of temperature have been obtained. The properties calculated include various site-site radial distribution functions, different energy distribution functions, selfdiffusion coefficients, the power spectra, and properties relating to cage-to-cage diffusion. The results suggest that sorbate is delocalized above 300 K. Both modes of cage-to-cage diffusion-the surface-mediated and centralized diffusion-are associated with negative barrier heights. Surprisingly, rate of cage-to-cage diffusion is associated with negative and positive activation energies below and above 500 K. The observed differences in the behavior of the rate of cage-to-cage diffusion between Xe-NaY and Ar-NaCaA systems and the nature of the potential energy surface are discussed. Presence of sorbatezeolite interactions results in significant enhancement in the rate of cage-to-cage diffusion and rate of cage visits. It is shown that properties dependent on the long-time behavior such as the diffusion coefficient and the rate of cages visited exhibit the expected Arrhenius dependence on temperature.
Resumo:
Ultra thin films of pure silicon nitride were grown on a Si (1 1 1) surface by exposing the surface to radio-frequency (RF) nitrogen plasma with a high content of nitrogen atoms. The effect of annealing of silicon nitride surface was investigated with core-level photoelectron spectroscopy. The Si 2p photoelectron spectra reveals a characteristic series of components for the Si species, not only in stoichiometric Si3N4 (Si4+) but also in the intermediate nitridation states with one (Si1+) or three (Si3+) nitrogen nearest neighbors. The Si 2p core-level shifts for the Si1+, Si3+, and Si4+ components are determined to be 0.64, 2.20, and 3.05 eV, respectively. In annealed sample it has been observed that the Si4+ component in the Si 2p spectra is significantly improved, which clearly indicates the crystalline nature of silicon nitride. The high resolution X-ray diffraction (HRXRD), scanning electron microscopy (SEM) and photoluminescence (PL) studies showed a significant improvement of the crystalline qualities and enhancement of the optical properties of GaN grown on the stoichiometric Si3N4 by molecular beam epitaxy (MBE). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A molecule having a ketone group between two thiophene groups was synthesized. Presence of alternating electron donating and accepting moieties gives this material a donor-acceptor-donor (DAD) architecture. PolyDAD was synthesized from DAD monomer by oxidative polymerization. Device quality films of polyDAD were fabricated using pulsed laser deposition technique. X-ray photoelectron spectroscopy (XPS) and fourier transform infrared spectra (FTIR) data of both as synthesized and film indicate the material does not degrade during ablation. Optical band gap was determined to be about 1.45 eV. Four orders of magnitude increase in conductivity was observed from as synthesized to pulsed laser deposition (PLD) fabricated film of polyDAD. Annealing of polyDAD films increase conductivity, indicating better ordering of the molecules upon heating. Rectifying devices were fabricated from polyDAD, and preliminary results are discussed.
Resumo:
The integrated diffusion coefficient of the phases and the tracer diffusion coefficients of the species are determined in the Nb-Si system by the diffusion couple technique. The diffusion rate of Si is found to be faster than that of Nb in both the NbSi2 and Nb5Si3 phases. The possible atomic mechanism of diffusion is discussed based on the crystal structure and on available details of the defect concentration data. The faster diffusion rate of Si in the Nb5Si3 phase is found to be unusual. The growth mechanism of the phases is also discussed on the basis of the data calculated in this study. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
larity solution is obtained for laminar 3D constant pressure flow with lateral streamline divergence. The similarity solution is shown to reduce to a Blasius solution for 2D flow over a flat plate. Measurements of velocity profiles are made to compare the similarity solution and are found to be in excellent agreement with the prediction