968 resultados para damage alarming and localization
Resumo:
The pattern of damage localization and fracture under uniaxial and biaxial tension was studied in glass–fiber nonwoven felts. The analyses were carried out within the framework of the finite-element simulation of plain and notched specimens in which the microstructure of the felt, made up of fiber bundles connected at the cross point through an organic binder, was explicitly represented. Following previous experimental observations, fracture by interbundle decohesion and energy dissipation by frictional sliding between the bundles were included in the model. It was found that the failure path in these materials was controlled by the maximum applied normal stress, regardless of the loading path, and that the failure locus under biaxial tension was well represented by the von Mises failure criteria. The notch sensitivity of the nonwoven felts was limited and the presence of a notch did not modify the failure path.
Resumo:
Background: Envenoming by viper snakes constitutes an important public health problem in Brazil and other developing countries. Local hemorrhage is an important symptom of these accidents and is correlated with the action of snake venom metalloproteinases (SVMPs). The degradation of vascular basement membrane has been proposed as a key event for the capillary vessel disruption. However, SVMPs that present similar catalytic activity towards extracellular matrix proteins differ in their hemorrhagic activity, suggesting that other mechanisms might be contributing to the accumulation of SVMPs at the snakebite area allowing capillary disruption. Methodology/Principal Findings: In this work, we compared the tissue distribution and degradation of extracellular matrix proteins induced by jararhagin (highly hemorrhagic SVMP) and BnP1 (weakly hemorrhagic SVMP) using the mouse skin as experimental model. Jararhagin induced strong hemorrhage accompanied by hydrolysis of collagen fibers in the hypodermis and a marked degradation of type IV collagen at the vascular basement membrane. In contrast, BnP1 induced only a mild hemorrhage and did not disrupt collagen fibers or type IV collagen. Injection of Alexa488-labeled jararhagin revealed fluorescent staining around capillary vessels and co-localization with basement membrane type IV collagen. The same distribution pattern was detected with jararhagin-C (disintegrin-like/cysteine-rich domains of jararhagin). In opposition, BnP1 did not accumulate in the tissues. Conclusions/Significance: These results show a particular tissue distribution of hemorrhagic toxins accumulating at the basement membrane. This probably occurs through binding to collagens, which are drastically hydrolyzed at the sites of hemorrhagic lesions. Toxin accumulation near blood vessels explains enhanced catalysis of basement membrane components, resulting in the strong hemorrhagic activity of SVMPs. This is a novel mechanism that underlies the difference between hemorrhagic and non-hemorrhagic SVMPs, improving the understanding of snakebite pathology.
Resumo:
Prostate cancer is one of the most frequent cancer types in Western societies and predominately occurs in the elderly male. The strong age-related increase of prostate cancer is associated with a progressive accumulation of oxidative DNA damage which is presumably supported by a decline of the cellular antioxidative defence during ageing. Risk of developing prostate cancer is much lower in many Asian countries where soy food is an integral part of diet. Therefore, isoflavones from soy were suggested to have chemopreventive activities in prostate cells. Here, we have investigated the hypothesis that the soy-isoflavone genistein could protect DNA of LAPC-4 prostate cells from oxidative stress-related damage by enhancing the expression of antioxidative genes and proteins. A 24 h preincubation with genistein (1-30 microM) protected cells from hydrogen peroxide-induced DNA damage, as determined by the comet assay. Analysis of two cDNA macroarrays, each containing 96 genes of biotransformation and stress response, revealed a modulated expression of 3 genes at 1 microM and of 19 genes at 10 microM genistein. Real-time PCR confirmed the induction of three genes encoding products with antioxidant activities, namely glutathione reductase (2.7-fold), microsomal glutathione S-transferase 1 (1.9-fold) and metallothionein 1X (6.3-fold), at 1-30 microM genistein. 17Beta-estradiol, in contrast, decreased the expression of metallothionein 1X at 0.3 microM (2.0-fold), possibly pointing to an estrogen receptor-mediated regulation of this gene. Immunocytochemical staining revealed an induction of metallothionein proteins at 30 microM genistein, while their intracellular localization was unaffected. Metallothioneins were previously found to protect cells from hydrogen peroxide-induced DNA damage. Hence, our findings indicate that genistein protects prostate cells from oxidative stress-related DNA damage presumably by inducing the expression of antioxidative products, such as metallothioneins. Genistein, therefore, might counteract the age-related decline of important antioxidative defence systems which in turn maintain DNA integrity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Traumatic brain injury results from a primary insult and secondary events that together result in tissue injury. This primary injury occurs at the moment of impact and damage can include scalp laceration, skull fraction, cerebral contusions and lacerations as well as intracranial hemorrhage. Following the initial insult, a delayed response occurs and is characterized by hypoxia, ischemia, cerebral edema, and infection. During secondary brain injury, a series of neuroinflammatory events are triggered that can produce additional damage but may also help to protect nervous tissue from invading pathogens and help to repair the damaged tissue. Brain microglia and astrocytes become activated and migrate to the site of injury where these cells secrete immune mediators such as cytokines and chemokines. CC-chemokine receptor 5 (CCR5) is a member of the CC chemokine receptor family of seven transmembrane G protein coupled receptors. CCR5 is expressed in the immune system and is found in monocytes, leukoctyes, memory T cells, and immature dendritic cells. Upon binding to its ligands, CCR5 functions in the chemotaxis of these immune cells to the site of inflammation. In the CNS, CCR5 and its ligands are expressed in multiple cell types. In this study, I investigated whether CCR5 expression is altered in brain after traumatic brain injury. I examined the time course of CCR5 protein expression in cortex and hippocampus using quantitative western analysis of tissues from injured rat brain after mild impact injury. In addition, I also investigated the cellular localization of CCR5 before and after brain injury using confocal microscopy. I have observed that after brain injury CCR5 is upregulated in a time dependent manner in neurons of the parietal cortex and hippocampus. The absence of CCR5 expression in microglia and its delayed expression in neurons after injury suggests a role for CCR5 in neuronal survival after injury.
Resumo:
Traumatic brain injury results from a primary insult and secondary events that together result in tissue injury. This primary injury occurs at the moment of impact and damage can include scalp laceration, skull fraction, cerebral contusions and lacerations as well as intracranial hemorrhage. Following the initial insult, a delayed response occurs and is characterized by hypoxia, ischemia, cerebral edema, and infection. During secondary brain injury, a series of neuroinflammatory events are triggered that can produce additional damage but may also help to protect nervous tissue from invading pathogens and help to repair the damaged tissue. Brain microglia and astrocytes become activated and migrate to the site of injury where these cells secrete immune mediators such as cytokines and chemokines. CC-chemokine receptor 5 (CCR5) is a member of the CC chemokine receptor family of seven transmembrane G protein coupled receptors. CCR5 is expressed in the immune system and is found in monocytes, leukoctyes, memory T cells, and immature dendritic cells. Upon binding to its ligands, CCR5 functions in the chemotaxis of these immune cells to the site of inflammation. In the CNS, CCR5 and its ligands are expressed in multiple cell types. In this study, I investigated whether CCR5 expression is altered in brain after traumatic brain injury. I examined the time course of CCR5 protein expression in cortex and hippocampus using quantitative western analysis of tissues from injured rat brain after mild impact injury. In addition, I also investigated the cellular localization of CCR5 before and after brain injury using confocal microscopy. I have observed that after brain injury CCR5 is upregulated in a time dependent manner in neurons of the parietal cortex and hippocampus. The absence of CCR5 expression in microglia and its delayed expression in neurons after injury suggests a role for CCR5 in neuronal survival after injury.
Resumo:
Mammalian constitutive photomorphogenic 1 (COP1), a p53 E3 ubiquitin ligase, is a key negative regulator for p53. DNA damage leads to the translocation of COP1 to the cytoplasm, but the underlying mechanism remains unknown. We discovered that 14-3-3σ controlled COP1 subcellular localization and protein stability. Investigation of the underlying mechanism suggested that, upon DNA damage, 14-3-3σ bound to phosphorylated COP1 at S387, resulting in COP1 translocation to the cytoplasm and cytoplasmic COP1 ubiquitination and proteasomal degradation. 14-3-3σ targeted COP1 for degradation to prevent COP1-mediated p53 degradation, p53 ubiquitination, and p53 transcription repression. COP1 expression promoted cell proliferation, cell transformation, and tumor progression, attesting to its role in cancer promotion. 14-3-3σ negatively regulated COP1 function and prevented tumor growth in cancer xenografts. COP1 protein levels were inversely correlated with 14-3-3σ protein levels in human breast and pancreatic cancer specimens. Together, these results define a novel, detailed mechanism for the posttranslational regulation of COP1 upon DNA damage and provide a mechanistic explanation of the correlation of COP1 overexpression with 14-3-3σ downregulation during tumorigenesis.
Resumo:
Pathogenic bacteria secrete pore-forming toxins that permeabilize the plasma membrane of host cells. Nucleated cells possess protective mechanisms that repair toxin-damaged plasmalemma. Currently two putative repair scenarios are debated: either the isolation of the damaged membrane regions and their subsequent expulsion as microvesicles (shedding) or lysosome-dependent repair might allow the cell to rid itself of its toxic cargo and prevent lysis. Here we provide evidence that both mechanisms operate in tandem but fulfill diverse cellular needs. The prevalence of the repair strategy varies between cell types and is guided by the severity and the localization of the initial toxin-induced damage, by the morphology of a cell and, most important, by the incidence of the secondary mechanical damage. The surgically precise action of microvesicle shedding is best suited for the instant elimination of individual toxin pores, whereas lysosomal repair is indispensable for mending of self-inflicted mechanical injuries following initial plasmalemmal permeabilization by bacterial toxins. Our study provides new insights into the functioning of non-immune cellular defenses against bacterial pathogens.
Resumo:
The p53 tumor suppressor protein plays a major role in cellular responses to anticancer agents that target DNA. DNA damage triggers the accumulation of p53, resulting in the transactivation of genes, which induce cell cycle arrest to allow for repair of the damaged DNA, or signal apoptosis. The exact role that p53 plays in sensing DNA damage and the functional consequences remain to be investigated. The main goal of this project was to determine if p53 is directly involved in sensing DNA damage induced by anticancer agents and in mediating down-stream cellular responses. This was tested in two experimental models of DNA damage: (1) DNA strand termination caused by anticancer nucleoside analogs and (2) oxidative DNA damage induced by reactive oxygen species (ROS). Mobility shift assays demonstrated that p53 and DNA-PK/Ku form a complex that binds DNA containing the anticancer nucleoside analog gemcitabine monophosphate in vitro. Binding of the p53-DNA-PK/Ku complex to the analog-containing DNA inhibited DNA strand elongation. Furthermore, treatment of cells with gemcitabine resulted in the induction of apoptosis, which was associated with the accumulation of p53 protein, its phosphorylation, and nuclear localization, suggesting the activation of p53 to trigger apoptosis following gemcitabine induced DNA strand termination. The role of p53 as a DNA damage sensor was further demonstrated in response to oxidative DNA damage. Protein pull-down assays demonstrated that p53 complexes with OGG1 and APE, and binds DNA containing the oxidized DNA base 8-oxoG. Importantly, p53 enhances the activities of APE and OGG1 in excising the 8-oxoG residue as shown by functional assays in vitro. This correlated with the more rapid removal of 8-oxoG from DNA in intact cells with wild-type p53 exposed to exogenous ROS stress. Interestingly, persistent exposure to ROS resulted in the accelerated onset of apoptosis in cells with wild-type p53 when compared to isogenic cells lacking p53. Apoptosis in p53+/+ cells was associated with accumulation and phosphorylation of p53 and its nuclear localization. Taken together, these results indicate that p53 plays a key role in sensing DNA damage induced by anticancer nucleoside analogs and ROS, and in triggering down-stream apoptotic responses. This study provides new mechanistic insights into the functions of p53 in cellular responses to anticancer agents. ^
Resumo:
Ataxia telangiectasia–mutated gene (ATM) is a 350-kDa protein whose function is defective in the autosomal recessive disorder ataxia telangiectasia (AT). Affinity-purified polyclonal antibodies were used to characterize ATM. Steady-state levels of ATM protein varied from undetectable in most AT cell lines to highly expressed in HeLa, U2OS, and normal human fibroblasts. Subcellular fractionation showed that ATM is predominantly a nuclear protein associated with the chromatin and nuclear matrix. ATM protein levels remained constant throughout the cell cycle and did not change in response to serum stimulation. Ionizing radiation had no significant effect on either the expression or distribution of ATM. ATM immunoprecipitates from HeLa cells and the human DNA-dependent protein kinase null cell line MO59J, but not from AT cells, phosphorylated the 34-kDa subunit of replication protein A (RPA) complex in a single-stranded and linear double-stranded DNA–dependent manner. Phosphorylation of p34 RPA occurred on threonine and serine residues. Phosphopeptide analysis demonstrates that the ATM-associated protein kinase phosphorylates p34 RPA on similar residues observed in vivo. The DNA-dependent protein kinase activity observed for ATM immunocomplexes, along with the association of ATM with chromatin, suggests that DNA damage can induce ATM or a stably associated protein kinase to phosphorylate proteins in the DNA damage response pathway.
Resumo:
Tissues expressing mRNAs of three cold-induced genes, blt101, blt14, and blt4.9, and a control gene, elongation factor 1α, were identified in the crown and immature leaves of cultivated barley (Hordeum vulgare L. cv Igri). Hardiness and tissue damage were assessed. blt101 and blt4.9 mRNAs were not detected in control plants; blt14 was expressed in control plants but only in the inner layers of the crown cortex. blt101 was expressed in many tissues of cold-acclimated plants but most strongly in the vascular-transition zone of the crown; blt14 was expressed only in the inner layers of the cortex and in cell layers partly surrounding vascular bundles in the vascular-transition zone; expression of blt4.9, which codes for a nonspecific lipid-transfer protein, was confined to the epidermis of the leaf and to the epidermis of the older parts of the crown. None of the cold-induced genes was expressed in the tunica, although the control gene was most strongly expressed there. Thus, the molecular aspects of acclimation differed markedly between tissues. Damage in the vascular-transition zone of the crown correlated closely with plant survival. Therefore, the strong expression of blt101 and blt14 in this zone may indicate a direct role in freezing tolerance of the crown.
Resumo:
Blindsight is a phenomenon in which human patients with damage to striate cortex deny any visual sensation in the resultant visual field defect but can nonetheless detect and localize stimuli when persuaded to guess. Although monkeys with striate lesions have also been shown to exhibit some residual vision, it is not yet clear to what extent the residual capacities in monkeys parallel the phenomenon of human blindsight. To clarify this issue, we trained two monkeys with unilateral lesions of striate cortex to make saccadic eye movements to visual targets in both hemifields under two conditions. In the condition analogous to clinical perimetry, they failed to initiate saccades to targets presented in the contralateral hemifield and thus appeared "blind." Only in the condition where the fixation point was turned off simultaneously with the onset of the target--signaling the animal to respond at the appropriate time--were monkeys able to localize targets contralateral to the striate lesion. These results indicate that the conditions under which residual vision is demonstrable are similar for monkeys with striate cortex damage and humans with blindsight.
Resumo:
Coxiella burnetii is a Gram-negative obligate parasitic bacterium that causes the disease Q-fever in humans. To establish its intracellular niche, it utilizes the Icm/Dot type IVB secretion system (T4BSS) to inject protein effectors into the host cell cytoplasm. The host targets of most cognate and candidate T4BSS-translocated effectors remain obscure. We used the yeast Saccharomyces cerevisiae as a model to express and study six C. burnetii effectors, namely AnkA, AnkB, AnkF, CBU0077, CaeA and CaeB, in search for clues about their role in C. burnetii virulence. When ectopically expressed in HeLa cells, these effectors displayed distinct subcellular localizations. Accordingly, GFP fusions of these proteins produced in yeast also decorated distinct compartments, and most of them altered cell growth. CaeA was ubiquitinated both in yeast and mammalian cells and, in S. cerevisiae, accumulated at juxtanuclear quality-control compartments (JUNQs) and insoluble protein deposits (IPODs), characteristic of aggregative or misfolded proteins. AnkA, which was not ubiquitinated, accumulated exclusively at the IPOD. CaeA, but not AnkA or the other effectors, caused oxidative damage in yeast. We discuss that CaeA and AnkA behavior in yeast may rather reflect misfolding than recognition of conserved targets in the heterologous system. In contrast, CBU0077 accumulated at vacuolar membranes and abnormal ER extensions, suggesting that it interferes with vesicular traffic, whereas AnkB associated with the yeast nucleolus. Both effectors shared common localization features in HeLa and yeast cells. Our results support the idea that C. burnetii T4BSS effectors manipulate multiple host cell targets, which can be conserved in higher and lower eukaryotic cells. However, the behavior of CaeA and AnkA prompt us to conclude that heterologous protein aggregation and proteostatic stress can be a limitation to be considered when using the yeast model to assess the function of bacterial effectors.
Resumo:
Carbon dioxide (CO(2)) is increasingly being appreciated as an intracellular signaling molecule that affects inflammatory and immune responses. Elevated arterial CO(2) (hypercapnia) is encountered in a range of clinical conditions, including chronic obstructive pulmonary disease, and as a consequence of therapeutic ventilation in acute respiratory distress syndrome. In patients suffering from this syndrome, therapeutic hypoventilation strategy designed to reduce mechanical damage to the lungs is accompanied by systemic hypercapnia and associated acidosis, which are associated with improved patient outcome. However, the molecular mechanisms underlying the beneficial effects of hypercapnia and the relative contribution of elevated CO(2) or associated acidosis to this response remain poorly understood. Recently, a role for the non-canonical NF-?B pathway has been postulated to be important in signaling the cellular transcriptional response to CO(2). In this study, we demonstrate that in cells exposed to elevated CO(2), the NF-?B family member RelB was cleaved to a lower molecular weight form and translocated to the nucleus in both mouse embryonic fibroblasts and human pulmonary epithelial cells (A549). Furthermore, elevated nuclear RelB was observed in vivo and correlated with hypercapnia-induced protection against LPS-induced lung injury. Hypercapnia-induced RelB processing was sensitive to proteasomal inhibition by MG-132 but was independent of the activity of glycogen synthase kinase 3ß or MALT-1, both of which have been previously shown to mediate RelB processing. Taken together, these data demonstrate that RelB is a CO(2)-sensitive NF-?B family member that may contribute to the beneficial effects of hypercapnia in inflammatory diseases of the lung.
Resumo:
We propose a crack propagation algorithm which is independent of particular constitutive laws and specific element technology. It consists of a localization limiter in the form of the screened Poisson equation with local mesh refinement. This combination allows the cap- turing of strain localization with good resolution, even in the absence of a sufficiently fine initial mesh. In addition, crack paths are implicitly defined from the localized region, cir- cumventing the need for a specific direction criterion. Observed phenomena such as mul- tiple crack growth and shielding emerge naturally from the algorithm. In contrast with alternative regularization algorithms, curved cracks are correctly represented. A staggered scheme for standard equilibrium and screened equations is used. Element subdivision is based on edge split operations using a given constitutive quantity (either damage or void fraction). To assess the robustness and accuracy of this algorithm, we use both quasi-brittle benchmarks and ductile tests.