923 resultados para crack branching


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At Mt. Makiling, Cuzon, Philippine Islands

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acropora is one of the largest taxonomic groups of scleractinian corals in the Indo-Pacific and contributes towards the establishment of coral communities in the Ryukyu Islands. Branching Acropora populations have a component of asexual reproduction; however, this may lead to a decline in genetic diversity, leaving populations vulnerable to environmental changes. Therefore, a sufficient supply of larvae produced via sexual reproduction is necessary to maintain genetic diversity in the branching Acropora communities. Fertilization success in branching Acropora depends on a variety of factors, including genetic and environmental conditions. How genotype and/or genetic compatibility drives fertilization rates in Acropora communities under natural conditions has not been investigated. To investigate how genotype and/or genetic compatibility determine fertilization rates in Acropora communities over the long-term, cross-mating experiments with branching Acropora using the same colonies were conducted from 2006 to 2011 in an aquarium. Acropora from cultured and natural colonies collected from a reef (26° 40' 19.2'' N, 127° 52' 40.8'' E) were used. Fertilization rates showed less variation within the same crossing combinations, but large variation across years for the same genotypes of focal colonies. Results indicated that fertilization rate was highly variable depending on genotype compatibility with different mating partners. Additionally, simulations of fertilization rates with increasing population size revealed that small populations that had low genetic diversity (fewer than 10 genotypes) failed to fertilize. These results support the establishment or maintenance of source populations that facilitate sufficient genetic diversity of branching Acropora to enhance coral community restoration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The radiation chemistry of poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) with a TFE mole fraction of 0.90 has been studied under vacuum using Co-60 gamma-radiation over a range of temperatures and absorbed doses. The radiolysis temperatures were 300, 363, 423, 523 and 543 K. New structure formation in the copolymers was analysed by solid-state F-19 NMR spectroscopy. The new structures formed in the copolymers have been identified and the G-values for the formation of new chemical structures have been investigated at 363 and 523 K. These two temperatures are just above and just below the polymer T-g and T-m, respectively. At the lower temperature, there was no evidence for any chain branching and an estimate of G(S) of 1.0 was obtained. A value of G(S) of 1.3 and a minimum value of G(X)(Y) of 1.3 were obtained at 523 K. (C) 2003 Society of Chemical Industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The embryonic period of motoneuron programmed cell death (PCD) is marked by transient motor axon branching, but the role of neuromuscular synapses in regulating motoneuron number and axonal branching is not known. Here, we test whether neuromuscular synapses are required for the quantitative association between reduced skeletal muscle contraction, increased motor neurite branching, and increased motoneuron survival. We achieved this by comparing agrin and rapsyn mutant mice that lack acetylcholine receptor (AChR) clusters. There were significant reductions in nerve-evoked skeletal muscle contraction, increases in intramuscular axonal branching, and increases in spinal motoneuron survival in agrin and rapsyn mutant mice compared with their wild-type littermates at embryonic day 18.5 (E18.5). The maximum nerve-evoked skeletal muscle contraction was reduced a further 17% in agrin mutants than in rapsyn mutants. This correlated to an increase in motor axon branch extension and number that was 38% more in agrin mutants than in rapsyn mutants. This suggests that specializations of the neuromuscular synapse that ensure efficient synaptic transmission and muscle contraction are also vital mediators of motor axon branching. However, these increases in motor axon branching did not correlate with increases in motoneuron survival when comparing agrin and rapsyn mutants. Thus, agrin-induced synaptic specializations are required for skeletal muscle to effectively control motoneuron numbers during embryonic development. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detection of a fatigue crack in a welded frame structure is studied in this paper using coupled response measurements. Similarity to real engineering structures is maintained in the fabrication of the test frame with hollow section chords and branch members. The fatigue crack was created by a special reciprocating mechanism that generates cyclic stress on a beam member of the structure. The methodology of coupled response measurements is first demonstrated on a single hollow section beam by analytical simulation and experimental validation. The issues of using this approach for fatigue crack detection in real structures are then examined. Finally, the experimental results of the frame under different scenarioes are presented. The existence of the crack is clearly observable from the FRF plots. It is suggested that this approach offers the potential to detect cracks in welded frame structures and is a useful tool for routine maintenance work and health assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Drosophila melanogaster, Slit acts as a repulsive cue for the growth cones of the commissural axons which express a receptor for Slit, Roundabout (Robo), thus preventing the commissural axons from crossing the midline multiple times. Experiments using explant culture have shown that vertebrate Slit homologues also act repulsively for growth cone navigation and neural migration, and promote branching and elongation of sensory axons. Here, we demonstrate that overexpression of Slit2 in vivo in transgenic zebrafish embryos severely affected the behavior of the commissural reticulospinal neurons (Mauthner neurons), promoted branching of the peripheral axons of the trigeminal sensory ganglion neurons, and induced defasciculation of the medial longitudinal fascicles. In addition, Slit2 overexpression caused defasciculation and deflection of the central axons of the trigeminal sensory ganglion neurons from the hindbrain entry point. The central projection was restored by either functional repression or mutation of Robo2, supporting its role as a receptor mediating the Slit signaling in vertebrate neurons. Furthermore, we demonstrated that Islet-2, a LIM/homeodomain-type transcription factor, is essential for Slit2 to induce axonal branching of the trigeminal sensory ganglion neurons, suggesting that factors functioning downstream of Islet-2 are essential for mediating the Slit signaling for promotion of axonal branching. (C) 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slit is a secreted protein known to repulse the growth cones of commissural neurons. By contrast, Slit also promotes elongation and branching of axons of sensory neurons. The reason why different neurons respond to Slit in different ways is largely unknown. Islet2 is a LIM/homeodomaintype transcription factor that specifically regulates elongation and branching of the peripheral axons of the primary sensory neurons in zebrafish embryos. We found that PlexinA4, a transmembrane protein known to be a coreceptor for class III semaphorins, acts downstream of Islet2 to promote branching of the peripheral axons of the primary sensory neurons. Intriguingly, repression of PlexinA4 function by injection of the antisense morpholino oligonucleotide specific to PlexinA4 or by overexpression of the dominant-negative variant of PlexinA4 counteracted the effects of overexpression of Slit2 to induce branching of the peripheral axons of the primary sensory neurons in zebrafish embryos, suggesting involvement of PlexinA4 in the Slit signaling cascades for promotion of axonal branching of the sensory neurons. Colocalized expression of Robo, a receptor for Slit2, and PlexinA4 is observed not only in the primary sensory neurons of zebrafish embryos but also in the dendrites of the pyramidal neurons of the cortex of the mammals, and may be important for promoting the branching of either axons or dendrites in response to Slit, as opposed to the growth cone collapse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Pisum sativium, the RAMOSUS genes RMS1, RMS2, and RMS5 regulate shoot branching via physiologically defined mobile signals. RMS1 is most likely a carotenoid cleavage enzyme and acts with RMS5 to control levels of an as yet unidentified mobile branching inhibitor required for auxin inhibition of branching. Our work provides molecular, genetic, and physiological evidence that RMS1 plays a central role in a shoot-to-root-to-shoot feedback system that regulates shoot branching in pea. Indole-3-acetic acid (IAA) positively regulates RMS1 transcript level, a potentially important mechanism for regulation of shoot branching by IAA. In addition, RMS1 transcript levels are dramatically elevated in rms3, rms4, and rms5 plants, which do not contain elevated IAA levels. This degree of upregulation of RMS1 expression cannot be achieved in wild-type plants by exogenous IAA application. Grafting studies indicate that an IAA-independent mobile feedback signal contributes to the elevated RMS1 transcript levels in rms4 plants. Therefore, the long-distance signaling network controlling branching in pea involves IAA, the RMS1 inhibitor, and an IAA-independent feedback signal. Consistent with physiological studies that predict an interaction between RMS2 and RMS1, rms2 mutations appear to disrupt this IAA-independent regulation of RMS1 expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously it has been shown that the branching pattern of pyramidal cells varies markedly between different cortical areas in simian primates. These differences are thought to influence the functional complexity of the cells. In particular, there is a progressive increase in the fractal dimension of pyramidal cells with anterior progression through cortical areas in the occipitotemporal (OT) visual stream, including the primary visual area (V1), the second visual area (V2), the dorsolateral area (DL, corresponding to the fourth visual area) and inferotemporal cortex (IT). However, there are as yet no data on the fractal dimension of these neurons in prosimian primates. Here we focused on the nocturnal prosimian galago (Otolemur garnetti). The fractal dimension (D), and aspect ratio (a measure of branching symmetry), was determined for I I I layer III pyramidal cells in V1, V2, DL and IT. We found, as in simian primates, that the fractal dimension of neurons increased with anterior progression from V1 through V2, DL, and IT. Two important conclusions can be drawn from these results: (1) the trend for increasing branching complexity with anterior progression through OT areas was likely to be present in a common primate ancestor, and (2) specialization in neuron structure more likely facilitates object recognition than spectral processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the general mechanisms of hot tearing are understood, i.e. the inability of liquid to feed imposed strain on the mushy material, work continues on improving the understanding of the mechanisms at play. A hot tear test rig that measures the temperature and load imposed on the mushy zone during solidification has been successfully used to study hot tearing. The mould has now been modified to incorporate a window above the hot spot region to allow observation of hot tear formation and growth. Combining information from visual observation with load and temperature data has led to a better understanding of the mechanism of hot tearing. Tests were carried out on an Al-0.5 wt-% Cu alloy. It was found that load development began at about 90% solid and a hot tear formed a short time later, at between 93% and 96% solid. Hot tearing started at a very low load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The depths of cracks in desiccating plastic concrete are estimated by considering the effects of the suction (negative pore pressure) associated with desiccation and applying five failure models derived from fracture, theories combined with theories drawn from geotechnical engineering under the assumption that plastic concrete is a frictional particulate material. The estimated crack depths vary with the depth of desiccation, the suction profile, and a small number of material parameters that depend on the model adopted and are comparatively easy to estimate accurately. Four of the models predict excessively large crack depths. The fifth, however, predicts shallower crack depths that increase with the age of the concrete and are consistent with those of analogous desiccation cracks in coal mine tailings. It thus offers a relatively robust method of estimating the depth of desiccation cracks. Confirmation of this with data for plastic concrete is clearly desirable but not possible at present.